Generic monograph of the Asteraceae-Anthemideae

KÅRE BREMER
Department of Systematic Botany, Uppsala University, Villavägen 6, S-752 36 Uppsala, Sweden
CHRISTOPHER JOHN HUMPHRIES
Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD

CONTENTS

Introduction 73
Materials and methods 73
Descriptive terminology 74
Taxonomic concepts 74
Cladistics 74
Tribal and subtribal divisions 74
Classification 76
Subtribal classification 76
Generic classification 77
Characters of the Anthemideae 78
Character scoring 78
Distribution 83
Key to genera 84
Anthemideae Cass. 90

1. Ursiniinae Bremer \& Humphries 91
2. Ursinia Gaertner 93
3. Lasiospermum Lagasca 94
4. Phymaspermum Less. 94
5. Eumorphia DC. 94
6. Gymnopentzia Benth. in Benth. \& Hook. f. 95
7. Hymenolepis Cass. 95
8. Athanasia L. 95
9. Asaemia (Harvey) Harvey ex Benth. in Benth. \& Hook. f. 96
10. Cancriniinae Bremer \& Humphries 96
11. Trichanthemis Regel \& Schmalh 97
12. Ugamia Pavlov 98
13. Richteria Karelin \& Kir. 98
14. Allardia Decne 98
15. Cancrinia Karelin \& Kir. 99
16. Cancriniella Tzvelev 99
17. 'Tanacetinae' Bremer \& Humphries 99
18. Tanacetum L. 100
19. Opisthopappus Shih 104
20. Tanacetopsis (Tzvelev) Kovalevsk 104
21. Xylanthemum Tzvelev 105
22. Lepidolopha Winkl. 105
23. Hippolytia Polj. 105
24. Heliocauta Humphries 106
25. Gonosperminae Bremer \& Humphries 106
26. Lugoa DC. 107
27. Gonospermum Less. 107
28. Inulanthera Källersjö 108
29. Handeliinae Bremer \& Humphries 108
30. Lepidolopsis Polj. 109
31. Polychrysum (Tzvelev) Kovalevsk. 109
32. Pseudohandelia Tzvelev 109
33. Handelia Heimerl 110
34. Sclerorhachis (Rech. f.) Rech. f. 110
35. Artemisiinae Less. emend. Bremer \& Humphries 110
36. Brachanthemum DC 113
37. Dendranthema (DC.) Des Moul. 113
38. Arctanthemum (Tzvelev) Tzvelev 114
39. Tridactylina (DC.) Sch. Bip. 115
40. Ajania Polj. 115
41. Phaeostigma Muld. 115
42. Stilpnolepis H. Kraschen 116
43. Ajaniopsis Shih 116
44. Filifolium Kitam. 116
45. Sphaeromeria Nutt. 117
46. Kaschgaria Polj. 117
47. Seriphidium (Besser ex Hooker) Four 117
48. Crossostephium Less 120
49. Artemisia L 120
50. Neopallasia Polj 125
51. Turaniphytum Polj. 125
52. Mausolea Polj 125
53. Picrothamnus Nutt. 125
54. Achilleinae Bremer \& Humphries 126
55. Santolina L. 128
56. Otanthus Hoffsgg \& Link 128
57. Achillea L. 128
58. Anacyclus L. 129
59. Leucocyclus Boiss 130
60. Mecomischus Cosson ex Benth. in Benth. \& Hook. 130
61. Chamaemelum Miller 130
62. Rhetinolepis Cosson 130
63. Cladanthus Cass 131
64. Anthemidinae Dumort. emend. Bremer \& Humphries 131
65. Anthemis L 132
66. Nananthea DC 134
67. Chrysantheminae Less. emend. Bremer \& Humphries 134
68. Chrysanthemum L 135
69. Heteranthemis Schott 135
70. Ismelia Cass. 135
71. Argyranthemum Webb ex Schultz-Bip 136
72. Leucantheminae Bremer \& Humphries 136
73. Lepidophorum Necker ex Cass 139
74. Nipponanthemum Kitam 139
75. Leucanthemella Tzvelev 139
76. Nivellea Wilcox, Bremer \& Humphries 140
77. Phalacrocarpum (DC.) Willk. 140
78. Leucanthemopsis (Giroux) Heyw 140
79. Hymenostemma (Kunze) Willk. 140
80. Prolongoa Boiss 141
81. Leucanthemum Miller 41
82. Rhodanthemum (Vogt) Bremer \& Humphries 141
83. Leucoglossum Wilcox, Bremer \& Humphries 142
84. Chlamydophora Ehrenb. ex Less 142
85. Chrysanthoglossum Wilcox, Bremer \& Humphries 143
86. Glossopappus Kunze 143
87. Coleostephus Cass 143
88. Plagius L'Hérit. ex DC 43
89. Thaminophyllinae Bremer \& Humphries 144
90. Osmitopsis Cass. 145
91. Adenanthellum B. Nord 145
92. Inezia E. Phillips 146
93. Lidbeckia P. J. Bergius 146
94. Thaminophyllum Harvey 146
95. Matricariinae Bremer \& Humphries 146
96. Cymbopappus B. Nord 151
97. Pentzia Thunb. 151
98. Marasmodes DC 152
99. Rennera Merxm 152
100. Oncosiphon Källersjö 152
101. Otospermum Willk 53
102. Heteromera Pomel 153
103. Daveaua Willk. ex Mariz 153
104. Matricaria L. 153
105. Microcephala Pobed. 154
106. Endopappus Schultz-Bip 154
107. Myхораррия Källersjö 155
108. Foveolina Källersjö 155
109. Lonas Adans. 155
110. Tripleurospermum Schultz-Bip. 155
111. Aaronsohnia Warb. \& Eig 156
112. Leucoptera B. Nord. 157
113. Adenoglossa B. Nord. 157
114. Hilliardia B. Nord. 157
115. Cotula L. 157
116. Leptinella Cass 159
117. Soliva Ruíz Lopez \& Pavon 159
118. Schistostephium Less. 160
119. Hippia L. 160
120. Eriocephalus L. 160
Excluded genera 161
References 161
Index 165

Abstract

Synopsis. The Asteraceae tribe Anthemideae is revised. In all, 12 subtribes, 108 genera and 1741 species are recognized; nine tribes are described as new and three, the Anthemidinae, the Artemiisinae and the Chrysanthemineae are emended in circumscription. Four new genera are described and many have been revised in circumscription. The definitions of the tribe, subtribes and genera are expressed in terms of sister group relations and the most robust hypotheses of character distribution utilizing the principles of synapomorphy, parsimony and character congruence. Phylogenetic relationships were determined using the tree-building computer program, HENNIG86. Cladograms of the subtribes and genera are provided together with a synoptic character analysis of each individual clade. A key to all genera is provided, each genus is described, all species currently recognized are listed with a brief synonomy and the relevant nomenclature and taxonomic changes are discussed in detail. Summaries of distributions are given in tables and within the generic accounts. The account ends with a list of excluded taxa and a taxonomic index.

INTRODUCTION

The Asteraceae tribe Anthemideae is one of the largest tribes of the family with 1741 species predominantly distributed in Eurasia, North and South Africa, with fewer species in North America and Australasia. The circumscription of the tribe is new but generally follows that outlined by Bentham in Bentham \& Hooker (1873a).

The principal taxonomic problems within the tribe are almost entirely relationships between genera but also circumscription of genera especially within subtribal groups such as the Artemiisinae, the Chrysantheminae, and the 'Tanacetinae'. This revision deals with the systematics and generic circumscription of the Anthemideae utilizing modern cladistic methods. The nomenclature and descriptive taxonomy have been fully revised in line with our own analyses and the literature scanned up to the present time. In addition to the formal taxonomic treatment a complete description of character definitions, character distributions and morphologies has been provided. Phytogeography and phylogeny have been included to give the correct context for the novel classifications and a brief historical review of tribal and subtribal groupings is also presented.

MATERIALS AND METHODS

The revision is based on herbarium specimens and living collections in botanic gardens. The rationale was to study as many of the recognized species as possible during the course of the work. Those species which we have been unable to locate are indicated with an asterisk (*) in the individual lists at the end of each generic account. We have studied specimens from the following herbaria; (Index Herbariorum; abbreviations as in Holmgren et al, 1981) BM, BOL, BRY, E, F, GH, K, LE, M, MO, NBG, NY, PRE, S, US. Several species have been transferred during the course of the revision and new combinations are provided. For some North African species new combinations based on names in the unpublished thesis of Helen Wilcox are validated here.

The generic descriptions and the character matrices are based on dried herbarium specimens and living specimens when these were available. Cross-sections of cypselas were made from reconstituted collections, softened in water, embedded in paraffin and ceresin wax, cut by microtome and stained with safranin and light green. The material examined has not been listed but all specimens examined were of known provenance.

Descriptive terminology

The descriptions and terms used throughout this work follow those in Featherly (1954) and Stearn (1966). The terminology for outlines and plane shapes adopted is that of the Systematics Association Committee for Descriptive Biological Terminology (1962). Descriptions of variation in corolla morphology generally follow those of Jeffrey (1977).

Taxonomic concepts

The taxonomic concepts in this revision are based on morphological studies. In most generic revisions, particularly in large families such as the Asteraceae, genera and higher taxa are frequently circumscribed on uncritical character analyses. This approach is considered by us to be unacceptable since in no way does it reflect the principles of cladistics. Generic names, as with all taxa of any rank, can only be applied to monophyletic groups. To recognize monophyletic groups which can be designated as genera (or species, or tribes) the concept of resemblance has to be resolved so that hypotheses of characters can be used to generate hypotheses about groups. Evolutionary novelties or synapomorphies, are those characters which diagnose monophyletic groups and have been utilized here accordingly (see Humphries \& Funk, 1984).

Cladistics

The technique we have used to diagnose monophyletic groups is the Wagner algorithm as implemented in the computer program Hennig86 (Farris, 1988). Hennig86 is an interactive program for cladistic analysis which can obtain most parsimonious trees by either exact or heuristic calculations. Characters were scored from the raw character matrices into discrete binary codes. Many of the characters we used were simply presence or absence characters and thus all characters were discretely coded in either a 0 or 1 state. However, a considerable number of the characters were polymorphic in their distribution especially in the larger genera. For precise details of the conventions adopted refer to the section on character coding. The character scores are presented in twelve matrices (Tables $4,6,8,10,12,13,15$, $17,19,21,23$, and 25 ; see taxonomic accounts below); eleven are for individual subtribes (Anthemidineae is combined with the Chrysantheminae) and one for subtribes represented as individual taxa (Table 4). For the analysis of subtribes the matrix (Table 4) was analysed as presented. For the subtribe matrices there are three blocks of scores within each matrix; the first represents character distributions at a level higher than subtribe, the second is characters varying within the subtribe and the third provides a summary of ambiguous information for a given subtribe. Cladistic analysis for the subtribes is based on the central block of characters in each of the data matrices.

Trees were calculated using a variety of options in Hennig86. All four commands, and five of the nine tree building options available in Hennig86 were utilized depending upon the size and complexity of each data matrix. The options were as follows; hennig (h), which constructs one tree with one pass through the data; mhennig* (mh*) which constructs several trees, each by a single pass, adding the terminal taxa in several different sequences. Branch swapping was applied to each of the initial trees and one tree from each initial one
was retained in the memory; branch-breaker* (bb*) a similar option to mhennig* but all of the obtained equally parsimonious trees were retained, as was allowed in the assigned memory of 128 k in the computer; implicit enumeration (ie*) which generated all possible shortest trees. The results guaranteed shortest trees and all equal length trees were retained in the available tree space; $i e$ - which found one guaranteed shortest tree by implicit enumeration.

Exact analyses (implicit enumeration) were applied to the Achilleinae, Anthemidinae, Cancriniinae, Chrysantheminae, Gonosperminae, Handeliinae, Tanacetinae, Thaminophyllinae and the Ursiniinae. The hennig, mhennig* and $b b^{*}$ options were applied to the larger groups including the Anthemideae tribal analysis and the analyses of the Artemisiinae, Leucantheminae and Matricariinae subtribes. The trees were all rooted utilizing the outgroup - a taxon scored from a North American group of genera within the Heliantheae tribe. All scored characters in each of the matrices were given equal weight. Unknown scores were left in since Hennig86 has the facility for coping with them. In the cases where more than one equally parsimonious tree was obtained the nelsen command was activated to produce a strict consensus tree (Farris, 1988). However, for the purpose of the classification only one of the final trees is figured in the text (see Figs 1, 2, 7, 11, 17, 20, 23, 31, 36, 41, 47 and 51; see taxonomic text below). Each tree was diagnosed using the xsteps command in order to determine the states of the hypothetical ancestors on each tree (i.e. the node states) and to generate statistics on length and fit.

Precise details of character changes along each clade are provided in the subtribe accounts. Each cladogram is provided with a unique letter and number code and the length and consistency of each tree is provided in the figure caption. The cladograms should be used in conjunction with the descriptive accounts of the character changes.

Outgroup

Bremer (1987) has put forward evidence for the hypothesis that Anthemideae and Heliantheae sensu lato are sister groups within a larger clade consisting of the Calenduleae, the Senecioneae, the Anthemideae and the Heliantheae. Bremer also showed that the Anthemideae and its postulated relatives in the Heliantheae share similar ray floret epidermis as elucidated in the work of Baagøe (1977). The two tribes also have similar habit and foliage with trinerved and dissected leaves especially in the subtribe Helenieae, and thus the North American species of this group were selected as the outgroup. It has been pointed out to us by Charles Jeffrey (in litt.) that the results published by Palmer et al. (1988) from an analysis of chloroplast DNA would suggest that we might consider a different outgroup. The consensus tree of Palmer et al. using 926 restriction site mutations places Astereae and Anthemideae as sister groups and the Eupatorieae as an ingroup of the Heliantheae. However, we consider that their sample of taxa is so preliminary that for the time being we remain with Bremer's (1987) morphological hypothesis.

TRIBAL AND SUBTRIBAL DIVISIONS

The first coherent tribal classification of the Asteraceae was that of Cassini $(1817,1826)$ who recognized 19 tribes in the
family. The precise systematic position of the Anthemideae within the Asteraceae is shown in a diagram of the family when Cassini used a map with an oval arrangement of abutting circles to express the relationships of the tribes (King \& Dawson, 1975). The Anthemideae were sandwiched between the Inuleae and the Ambrosineae. Cassini expressed the opinion that the Anthemideae are most closely related to the Heliantheae although in style structure they were very similar to the Inuleae, the Senecioneae and the Nassauviineae. Cassini (1826) divided the tribe into two major groups: Anthémidées - Prototypes (Anthemideae-Archetypae) and Anthémidées - Prototypes vraies, based on the prescence or absence of receptacular scales respectively. For many genera the division is quite workable and many of them can be placed in one group or the other. However, the artificiality of this character can clearly be demonstrated in several taxa especially the genus Anthemis (Ammanthus group) in which paleate and non-paleate forms can occur within one species (Heywood \& Humphries, 1977).

Lessing (1832) had a quite different treatment from that of Cassini, and although his classification was avowedly artificial, since it was written with identification in mind, it clearly influenced the later major treatments of de Candolle (1837), Bentham (1873a, b), and Hoffmann (1894) (see Heywood \& Humphries, 1977). Lessing recognized eight tribes and the genera of the Anthemideae were included in tribe VII Senecionideae subtribes Chrysanthemeae and Artemisieae. The Chrysanthemeae were further subdivided into two taxa of indefinite rank, the Anthemideae and Chrysanthemeae, and the Artemisieae were divided up into six taxa of indefinite rank.

De Candolle (1837) recognized Cassini's tribe Anthemideae as a subtribe and more or less followed Lessing's indefinite ranks which he categorized as divisions. However, he synonymised the Santolineae with the Euanthemideae. Bentham (1873a) recognized the Anthemideae as a tribe and divided it into six informal taxa. Four of these were common to the Lessing and de Candolle treatments but he also recognized the Lidbeckieae and the Tanaceteae as separate taxa. Of other 19th century works, that of Hoffmann (1894) is the only one of significance and he simply recognized the Cassini classification, dividing the tribe into two subtribes.

Baillon (1886) provided an end of century classification of the angiosperms in his classic Histoire des plantes. For the Asteraceae he recognized eight tribes and four hundred and three genera. The sub-series Anthemidées was included in an enlarged tribe Hélianthées together with the Héléniées, Sénécionées and the true Euhélianthées.

Most 20th century contributions have been concerned with the classification and delimitation of genera but rather silent about suprageneric classification and the relationship of the tribe to other tribes. However, Bessey (1915) provided perhaps the most novel treatment of the Asteraceae when he raised the family to the rank of order and raised fourteen tribes to family status. Family 296, the Anthemidaceae was sandwiched between families 295 and 297, the Eupatoriaceae and the Senecionidaceae respectively. However, most treatments have simply tended to follow the tribal groupings outlined by Bentham (1873a) with no real modifications to the status of infra-tribal groups (e.g. Carlquist, 1976; Cronquist, 1955, 1977; Wagenitz, 1976).

Poljakov (1967) recognized six subtribes in the Anthemideae in a treatment that to some extent resembled that of

Bentham but with a more detailed consideration of the Artemisiinae.

One of the most recent attempts at creating subgroups within the tribe is that of Reitbrecht (1974) who considers that the Anthemideae consists of seven provisional groups (Humphries, 1979). These include the Ursinia group, to include Ursinia and its allies, the Lasiospermum group to include the majority of the African genera, especially Lasiospermum and Eriocephalus, the Chrysanthemum group for some members of the Tanacetinae, Chrysanthemineae and Leucanthemineae as recognized by us, the Matricaria group to include the Anthemidineae and some members of the Matricariinae, and the Cotula group for various other members of our Matricariinae.

Bremer (1987) undertook the first cladistic analysis of the tribes of the Asteraceae. The cladogram he obtained suggested a number of novel groupings. The Anthemideae were clearly placed in the monophyletic subfamily, Asteroideae, and appeared as the sister group of the Heliantheae in a subgroup consisting of the Calenduleae, the Senecioneae, the Anthemideae and the Heliantheae, with the Astereae and the Eupatorieae as sister groups. Bremer obtained his result by considering that the Anthemideae and the Heliantheae share similar ray floret cells (Baagøe, 1977), and similar foliage with trinerved and dissected leaves which are interpreted as synapomorphies for the two tribes.

Some of the older groups recognized by the 19th century authors have caused problems as a result of different interpretations of characters considered of importance in classification. One of the most problematic groups within the Anthemideae is the Ursinia group, and Ursinia in particular. Ursinia resembles the Anthemideae in habit and the Arctotideae in terms of superficial features of the capitulum. The interpretation as to its exact position has varied, depending mostly on the weight of individual characters rather than any form of character analysis. Bentham (1873a) placed Ursinia in the tribe Arctotideae (sensu Norlindh, 1977) mainly because of its well developed pappus scales. Cassini (1816) followed by Beauverd (1915), Merxmuller (1954), Prassler (1967), and Reitbrecht (1974) considered it to be a member of Anthemideae. Robinson \& Brettell (1973) argued that the inclusion in the Anthemideae of an anomalous genus like Ursinia with its conspicuous pappus scales, widely ovate apical anther appendages, and different pollen morphology (exine without columnar structure) stretched the workable tribal concept. They proposed a new tribe, Ursinieae, which included only Ursinia. However, they were not working within a cladistic framework and have used in our opinion autapomorphic characters to define their new tribe. Acceptance of their solution does nothing to actually clarify the position of the Ursinieae in terms of its sister group relations and would render the Anthemideae as paraphyletic if the Ursinieae were excluded from it. As described in the generic account, we consider the large pappus scales and the shape of the apical anther appendage plesiomorphic within the Anthemideae, since similar structures occur in the outgroup. The pollen was investigated by Stix (1960) and she concluded that Ursinia belongs to the Anthemideae. The presence of unique furanosesquiterpenes which must be considered as apomorphic for Ursinia and other South African genera of the subtribe Ursiniineae, in our view diagnoses the Ursinieae as a natural group and corroborates its tribal position as a member group of the Anthemideae.

Bentham's informal group, the Cotuleae, has also been
scrutinized by a variety of workers in recent years. Bentham (1873b) recognized the 'Cotuleae' mostly by 'the mutual possession of characters representing loss or reduction in the habit and various parts - involucre, paleae, ray florets, pappus, number of corolla teeth and stamens (to four) and seed-sterility of disk florets' (Lloyd, 1972a). It is a classic polyphyletic group and all of its constituent members (12 genera; Table 1) have been analysed in terms of gross morphology (Heywood \& Humphries, 1977), flower and fruit structure (Bruhl \& Quinn, 1990, 1991), and pollen morphology (Jarvis, 1976; Bruhl \& Quinn, 1991). Most of the taxa of the Cotuleae are very small plants occurring in the southern hemisphere with structurally reduced parts. The detailed morphological analyses have shown that most taxa are misplaced within the Anthemideae and these are marked with asterisks in Table 1. Several of these have already been transferred to other tribes (see list of excluded genera, Heywood \& Humphries, 1977). The remainder are all members of our revised group, the Matricariinae, in which Cotula, Leptinella, and Soliva are all closely related genera.
In addition to those studies listed by Heywood \& Humphries (1977), in recent years there have been several studies of higher classification in the Anthemideae, particularly by Swedish workers within the Museum of Natural History, but these have concentrated on taxa selected within the tribe. For example, Nordenstam (1976a) reclassified a number of genera masquerading under the name of Chrysanthemum in South Africa and Källersjö (1988) examined the patterns of relationship in the South African Pentzia group of genera.

CLASSIFICATION

Subtribal classification

In this study an entirely new subtribal classification is proposed. We have grouped genera into larger monophyletic entities, subtribes, rather than by a more traditional method of dividing the tribe using particular characters. We are fairly confident that we have identified a number of monophyletic entities, and produced a number of well supported cladograms. At this time we find it appropriate to recognize 12 subtribes, most of which represent generic groups that are fairly well understood as monophyletic. Several peculiar genera of uncertain position have been more or less provisionally accommodated in otherwise homogenous subtribes.

Table 1 The 'Cotuleae' group as recognized by Bruhl \& Quinn

 (1990, 1991).[^0][^1]We think it is better to present a hypothesis on the relationships of such genera of uncertain position rather than simply listing them at the end of the tribe. However, genera excluded from the Anthemideae are simply listed at the end of the revision.

The predominantly Asian subtribe 'Tanacetinae' is only a provisional taxon in this treatment. It is at best paraphyletic and will probably turn out to be polyphyletic in later studies. It contains the large genus Tanacetum, a dubious taxon of critical importance in future studies of the Anthemideae. In our study we have grouped together a number of genera that appear to have their sister groups within Tanacetum. Furthermore, it is possible that several other subtribes also have their sister groups within Tanacetum. It is clear to us that the subtribe 'Tanacetinae', and most particularly Tanacetum itself, are unresolved taxa.

Ursiniinae, Gonosperminae, Handeliinae, Chrysantheminae and Thaminophyllinae are homogeneous and monophyletic subtribes without inclusion of problematic genera. Some generic affinities within these subtribes have been understood by earlier authors, but in general they are emended here. For example, the Canary Island Lugoa and Gonospermum, a well known generic pair, are associated with the South African Inulanthera, and the three genera form our subtribe Gonosperminae.

Ursiniinae is the South African group containing furanosesquiterpenes (Greger, 1977, and references therein) and the precise delimitation of the Ursiniinae was undertaken by Källersjö (1986).

Handeliinae contains a number of small Asian genera. The association of Sclerorhachis with the other genera of the Handeliinae is new. The affinities between the other genera are described already by Tzvelev (in Komarov, 1961) although he did not recognize the subtribe and he placed them in widely different positions in his floristic classification.

Chrysantheminae as we understand it is a small group that has been identified by earlier authors (see Humphries, 1976; Heywood \& Humphries, 1977, and references therein).

Thaminophyllinae is a South African subtribe that hitherto has hardly been considered, although affinities of some genera have been discussed by recent authors (Nordenstam, 1976; Bond, 1980).

Cancriniinae, Artemisiinae, Achilleinae, Anthemidinae, Leucantheminae and Matricariinae are subtribes that we also consider monophyletic with the character information used in this study. Further investigations may result in changes in their delimitation, however, since a number of problematic genera are involved and the defining characters are rather few in some subtribes. Affinities between several of the genera within each of these subtribes have been indicated by earlier authors but their precise delimitations here are entirely new.
The Asian Cancriniinae seems homogeneous but may eventually become a larger group, as its relatives probably occur within the undefined subtribe 'Tanacetinae'. The affinities between some of the genera of the Cancriniinae have also been described by Tzvelev (in Komarov, 1961).

The mainly Asian and large subtribe Artemisiinae contains the Artemisia group of genera, an assemblage that has been recognized for some time (e.g. Besser, 1829). We have added their plesiomorphic relatives to this group. The relationships of some of these genera to Artemisia and its relatives have been indicated by Poljakov (1955) and Tzvelev in Komarov (1961).

The Eurasian/North African subtribe Achilleinae is a generic group hitherto unrecognized. Interrelationships between a few of the genera have been understood (e.g. Achillea, Anacyclus, and Leucocyclus, Humphries, 1979; Greger, 1977; Valant-Vetschera, 1981) but the subtribe is a new generic grouping. Santolina is a plesiomorphic genus of uncertain position. It may have close relatives within the 'Tanacetinae'.

In this treatment the Anthemidinae contains only two genera: Anthemis and Nananthea, the latter a specialized genus of uncertain position, and discussed at greater length in the generic account.

The predominantly Mediterranean Leucantheminae includes a large subgroup, the Leucanthemum group, which has been largely elucidated by the studies of Wilcox (1977) and is considered by us to be a well supported monophyletic unit. Leucanthemopsis is generally associated with Leucanthemum (Heywood, 1954, 1976) and to it we add Phalacrocarpum, Hymenostemma and Prolongoa. There are other small genera of more uncertain position, such as Lepidophorum, Nipponanthemum, Leucanthemella and Nivellea. Pending further studies, we have considered it worthwhile to include them in the Leucantheminae.

The large cosmopolitan subtribe, Matricariinae, represents one of the more interesting generic groupings presented in this study. We consider it monophyletic with reservations for a few genera of possible uncertain position such as Rennera and Oncosiphon. Within the Matricariinae there is the southern hemisphere Cotula group, an homogeneous, monophyletic unit, quite distinct from the generic assemblages introduced by Bentham (1873a) and discussed by more recent authors (see e.g. Heywood \& Humphries, 1977; Bruhl \& Quinn, 1990, 1991). We have refrained from recognizing the Cotula group as a subtribe, since it would probably make the remaining Matricariinae paraphyletic. Related to the Cotula group are several predominantly Mediterranean and South African genera, the interrelationships of which have hitherto been unprescribed.

Although we feel that the majority of our subtribes are well supported and easily distinguished, subtribal interrelationships have been difficult to assess and the main cladogram (Fig. 1) is largely unresolved at the subtribal level. The cladogram as presented is one of several equally parsimonious hypotheses. We suggest that the Ursiniinae and Cancriniinae are plesiomorphic particularly in terms of the scale-like pappus structures as compared to other tribes. The genus Ursinia within the subtribe Ursiniinae has always been considered to occupy an anomalous position in the Anthemideae. In our opinion, this is partly due to the presence of plesiomorphic features. Some of these, particularly basal arrangements of leaves and basal woodiness and the internal anatomy of cypselas in some members of the Ursiniinae and other relatively basal taxa such as the Cancriniinae, are remarkably similar to those found in members of the outgroup which we interpret as examples of symplesiomorphy.

Within the remaining group of ten subtribes it is reasonable to suggest that the predominantly Mediterranean and South African subtribes, such as the Achilleinae, Anthemidinae, Chrysantheminae, Leucantheminae, Thaminophyllinae and Matricariinae are closely related to each other because of shared possession of floral resin canals as compared to the mainly Asian 'Tanacetinae', Gonosperminae (African but apparently directly related to Tanacetum), Handeliinae and Artemisiinae. We admit that such a character is vague in
circumscription but we offer this classification as a basis for further investigation. The Thaminophyllinae and Leucantheminae may be closely related subtribes because of similarities in foliage characters.

Generic classification

At the generic level a number of changes should be noted. The status of particular genera as being monophyletic or non-monophyletic will be discussed briefly. We have adopted a conservative style and undertaken generic redelimitations only whenever necessary and wherever possible. Our aim has been to reclassify para- or polyphyletic genera and maximize the number of monophyletic genera within the Anthemideae. In many cases we have been content in discussing the non-monophyletic status of existing genera, to leave redelimitations of ambiguous taxa to future systematists.

Many of the new and redefined genera have been analysed in more detail and considered by authors working in close connection with us (Källersjö, 1986, 1988, 1991; Bremer \& Källersjö, 1986; Nordenstam, 1976; Ling, 1980a, $b, 1991 a, b$; Wilcox, 1977). The definitions and dispositions of these new genera as determined by these authors include Inulanthera (Gonosperminae), Rhodanthemum (Leucantheminae), Oncosiphon, Myxopappus, Foveolina and Hilliardia (Matricariinae) and Seriphidium (Artemisiinae). Redefined genera include Phymaspermum, Hymenolepis, Athanasia (Ursiniinae), and Pentzia and Rennera (Matricariinae).

New genera described within this monograph include Chrysanthoglossum, Nivellea, Leucoglossum, and Rhodanthemum, taxa all within the Leucantheminae. Richteria (Cancriniinae) and Ismelia (Chrysantheminae) are two small genera originally described during the 19th century, later reduced into synonomy and then re-established here. Typically misplaced species have been transferred to a variety of genera such as Microcephala and Aaronsohnia (Matricariinae). Also, it should be noted that taxonomic changes established here have dramatically improved the delimitation and definitions of well-known genera such as Artemisia, Chrysanthemum (s.s.), Leucanthemum and Tripleurospermum. By removing a number of species from these formerly non-monophyletic genera and assigning the misplaced species to new genera, the streamlined versions of the new taxa are now more likely to be monophyletic.

The majority of genera within the Anthemideae are monophyletic taxa but there are several exceptions which will obviously require further taxonomic work, as indicated in further detail in the generic accounts. Of the relatively smaller taxa, genera without autapomorphies include Eumorphia (Ursiniinae), Richteria (Cancriniinae), Tanacetopsis ('Tanacetinae'), Gonospermum (Gonosperminae), Sphaeromeria (Artemisiinae), Mecomischus and Chamaemelum (Achilleinae), Leucanthemopsis and Coleostephus (Leucantheminae), and Cymbopappus and presumably Matricaria (Matricariinae). Future work should reveal whether they are monophyletic or non-monophyletic taxa. Amongst the larger genera, Achillea is one of similar uncertain stature.

Tanacetum ('Tanacetinae'), Dendranthema, Ajania and Artemisia (Artemisiinae), and Cotula (Matricariinae) are shown to be non-monophyletic. Other genera and even groups of genera have their sister groups within these taxa and eventually they will have to be split into smaller monophyletic units. In the next few years we envisage further changes of considerable magnitude which will necessitate
taxonomic and nomenclatural rearrangements quite different from those traditionally recognized.

CHARACTERS OF THE ANTHEMIDEAE

The characters used in the cladogram and for delimitation of genera are discussed below (see Table 2). The terms character and apomorphy are used synonymously, since any character is apomorphic at its universal level within the taxonomic hierarchy. The corresponding plesiomorphic condition is omitted from the character table. In obvious cases, such as perennial being considered as plesiomorphic as compared to annual, the perennial condition is not mentioned. In other characters the corresponding plesiomorphic conditions are explained elsewhere. The identification of characters and character states was undertaken by outgroup comparison with parts of the Asteraceae-Heliantheae.

Character scoring

There have been problems in scoring character states. For several character states, particular variables are expressed only within some species of a particular genus. Furthermore, the problem of unknown or inapplicable character states has caused conflicts during analysis. As far as this study is concerned each character may be scored in one of five different ways for a particular genus:

1: The character is present in all species of the genus.
a: The character is polymorphic and present in only some but not necessarily all species of the genus. We take the line that all characters of this type are originally present within a genus but secondarily lost in some species. This interpretation is based on comparison with the immediate relatives of the genus, identified during or after cladistic analysis. If the character is present in the sister taxa or close relatives, it is also considered originally present within the genus; 'a’ stands for apomorphic. This method is simply outgroup comparison with the ingroup restricted to a particular genus being scored for the character.

0 : The character is absent from all species of the genus.
p: The character is absent from some but not necessarily most species of the genus. It is interpreted as originally absent within the genus; ' p ' stands for plesiomorphic but independently derived in other species. The reason for this interpretation is similar to 'a' above. If the character is absent in the relatives, it is also considered originally absent within the genus.
?: The character is unknown or inapplicable to the genus. Characters relating to chemistry, embryology and chromosome number are sporadic and unknown for many genera. Other characters are inapplicable to some genera. For example, characters of receptacular paleae and ray florets are inapplicable in epaleate and non-radiate genera, respectively. In the cladograms (Figs 1-12; see taxonomic text below) unknown or inapplicable characters are assumed to be present or absent following the principle of parsimony. If the character is known to be present in some genera of a particular group, it is also considered present in all genera of that group, and vice versa.

Table 2 Characters used in the cladograms.

1 Plants annual.
2 Plants shrubby.
3 Plants spiny.
4 Plants compact and more or less scaphoid.
5 Plants with one or few sparsely branched stems arising from a woody villous caudex.
6 Plants rhizomatous with rosulate, spathulate-obovate-linear leaves.
7 Plants with branches in whorls below the first capitula.
8 Plants basally villous-tomentose with rather thick stems and a soft pith.
9 Plants covered with a dense greyish-white indumentum.
10 Plants covered with viscid hairs.
11 Plants with dolabriform hairs.
12 Plants with stellate hairs.
13 Plants with interxylary cork.
14 Leaves opposite.
15 Leaves variously deeply lobed or divided.
16 Leaves much pinnatisect with filiform lobes.
17 Leaves pectinate-pinnatisect with filiform, apically somewhat swollen and mucronulate lobes.
18 Leaves with few, oblong to rounded, apically mucronate lobes.
19 Leaves large with many rounded lobes.
20 Leaves spathulate in outline, ternate to ternately pinnate.
21 Leaves serrate-dentate.
22 Leaves entire or apically tridentate.
Leaves entire, ericoid.
Leaves rather fleshy, few-lobed or entire.
Leaves rather fleshy, entire, linear.
Leaves closely set, lanceolate to linear.
Leaves vermiform.
Leaves with secretory cavities.
9 Capitula densely corymbose.
30 Capitula very small and numerous in a large, dense, semiglobose corymb.
31 Capitula in a long narrow panicle or raceme.
32 Capitula in glomerules arranged in long spikes.
33 Capitula on short and nodding peduncles.
34 Capitula sessile along the stems.
35 Capitula discoid.
36 Capitula disciform.
37 Involucre rather narrowly urceolate.
38 Involucral bracts in 4-7 rows.
39 Involucral bracts in 1-2 rows, rather wide.
40 Involucral bracts in 2 unequal series.
41 Involucral bracts wide, flabelliform.
42 Involucral bracts subulate.
43 Involucral bracts with scarious margins.
44 Involucral bracts with dark brown margins.
45 Receptacle paleate.
46 Receptacle narrowly conical to subulate.
47 Receptacle hollow.
48 Receptacle pilose.
49 Receptacle densely hirsute.
50 Receptacular paleae pilose.
51 Floral parts with resin canals.
52 Ray floret limb white.
53 Ray floret limb golden yellow.
54 Ray floret limb bluish violet.
55 Ray floret limb deeply emarginate.
56 Ray floret limb epidermis cells tabular (senecioid or mutisioid type).
57 Ray floret tube sinus extending to the base.
58 Ray and disc floret tube dorsiventrally flattened.
59 Ray floret tube and cypsela pilose laterally; ray floret limb pilose abaxially.
60 Ray floret tube confluent with the cypsela.
61 Ray floret tube persistent on the cypsela.
62 Outer florets stalked.
63 Outer female florets in several rows.
64 Outer female florets subtended by scaphoid bracts.

Table 2 cont
65 Outer female floret corollas 'flask-shaped', tapering above or narrowly cylindrical.
66 Outer female floret corollas without teeth.
67 Outer female florets without corollas.
68 Outer female floret style-branches lanceolate, flat, acute.
69 Corolla gradually expanded, rather thin and funnel-shaped.
70 Corolla inflated with a hollow space between outer surface and inner layer.
71 Corolla apically contracted.
72 Disc corolla 4-lobed.
73 Disc corolla lobes with dorsal appendages.
74 Corollas with continuous veins extending into the lobes.
75 Disc corolla lobes with central resin sacs.
76 Disc corolla zygomorphic with 2 smaller adaxial lobes with marginal resin canals extending from the base of the corolla and with 3 larger abaxial lobes.
77 Disc corolla red.
78 Corolla apically with erect, straight hairs.
79 Corolla apically with long, reddish hairs.
80 Corolla apically with stellate hairs.
81 Corolla cobwebby pilose.
82 Disc corolla tube thickened in fruit.
83 Disc corolla tube very thick and brittle.
84 Disc corolla tube basally saccate at least adaxially.
85 Disc corolla tube deeply and equally saccate both abaxially and adaxially.
86 Corolla tube basally copiously swollen and spongy, almost enclosing the cypsela especially laterally.
87 Disc corolla tube confluent with the cypsela.
88 Disc corolla tube pilose.
89 Corolla tube with long-stalked glands; stalk cells elongated.
90 Disc corolla tube and cypsela ribs with thick vascular strands.
91 Central florets of two kinds; outer perfect, inner completely sterile with reduced ovaries.
92 Anthers caudate.
93 Anthers with triangular-linear-lanceolate apical appendages, of rather thick-walled cells.
94 Anthers with an apical resin sac.
95 Anthers with endothecial tissue partly or wholly polarized.
96 Pollen grains with short or without spines.
97 Pollen grains without spines.
98 Pollen grains hexa-panto-colporate.
99 Style slender, parallel-sided at base.
100 Style immersed in a lobed nectary.
101 Style persistent and spinescent in fruit.
102 Style-branches brownish.
103 Disc floret style-branches long-penicillate.
104 Disc floret style-branches fused.
105 Stylopodium large and persistent in fruit.
106 Central floret ovaries reduced; florets functionally male.
107 Cypselas terete to weakly angled, or flattened.
108 Cypselas turbinate.
109 Cypselas arcuate.
110 Cypselas ellipsoid, small, c. 1 mm long.
111 Cypselas subglobose, with 2-3 very thin lateral-adaxial ribs.
112 Cypselas large, with 3 thick protruding sclerenchymatous ribs, somewhat winged in ray cypselas.
I13 Cypselas slender and tuberculate with numerous obtuse excrescences.
114 Cypselas dorsiventrally flattened.
115 Ray cypselas dorsiventrally flattened with 3 adaxial ribs.
116 Disc cypselas laterally flattened.
117 Cypselas laterally winged.
118 Ray cypselas laterally winged; wings projected to apical teeth.
119 Cypselas with sclerenchymatic lateral wings.
120 Cypselas heteromorphic; ray cypselas triquetrous, winged; disc cypselas terete to prismatic to laterally flattened.
121 Disc cypselas abaxially and adaxially winged.
122 Cypsela wings as apical spines.
123 Cypselas with a mainly abaxial entire or toothed rim.
124 Cypselas with $10(8-12)$ multicellular epicarpic ribs.
125 Cypsela ribs basally fused into a more or less well developed foot callus.
126 Cypsela ribs protruding, narrow and somewhat wing-like.

Table 2 cont
127 Cypselas with 5 mainly adaxially arranged ribs.
128 Cypselas with 1 abaxial and 2 lateral thick ribs and 2-3 adaxial ribs.
129 Cypselas with 1 adaxial and 2 lateral rather thick ribs.
130 Cypselas with 2 lateral vascular strands, sometimes also with 1 adaxial strand.
131 Cypselas 10 -ribbed with costal veins and resin canals.
132 Cypsela ribs with ellipsoid secretory cavities forming longitudinal ducts.
133 Cypselas with costal resin canals or sacs.
134 Cypselas with vallecular secretory canals.
135 Cypselas with vallecular vascular strands.
136 Cypselas abaxially and apically with 2 distinct, occasionally 1 or $3-5$, resin sacs.
137 Cypselas with a single resin sac apically in the adaxial rib.
138 Cypselas with scattered elongated resin sacs.
139 Cypselas completely covered with rows of myxogenic cells.
140 Cypselas with myxogenic cells on abaxial surface and on the ribs of the adaxial surface.
141 Cypselas with dense rows of myxogenic cells also on the corona.
142 Cypselas with large myxogenic cells in rounded, scattered groups.
143 Cypselas with myxogenic cells in 2 distinct adaxial-lateral rows.
144 Cypselas with scattered, ovoid, myxogenic trichomes.
145 Cypselas papillose.
146 Cypselas long-papillose, seemingly pubescent.
147 Cypselas densely pilose; hairs subulate, with a few basal cells and one long apical cell.
148 Cypselas cobwebby pilose.
149 Cypselas with rather stiff unbranched hairs of $3-8$ cells with spiral wall thickenings.
150 Cypselas copiously villous, seemingly covered in 'cotton wool'.
151 Cypsela wall without carbonized layer.
152 Cypsela wall several cell layers thick, partially or completely sclerified.
153 Cypsela thick-walled and conspicuously rugose.
154 Cypselas thin-walled, obovoid to oblanceolate, devoid of ribs.
155 Cypsela wall very thin, translucent and showing brownish black, rounded, very thick-walled testa epidermis cells.
156 Cypsela wall white and spongy; pericarpic cells isodiametric with thin spiral wall thickenings.
157 Cypsela wall with rod-shaped crystals in small packets.
158 Cypsela wall with numerous druses in the pericarp.
159 Cypsela wall with a continuous ring of fibre-like cells.
160 Cypsela wall with a continuous ring of sclerified isodiametric cells.
161 Pappus of short (not large and obovate or bristle-like) scales, an auricle, a corona, or absent.
162 Pappus of scales or teeth projected from the ribs.
163 Pappus of separate, mainly abaxial, subulate scales.
164 Pappus of 5 convolute-contorted scales.
165 Pappus a scarious, flimsy corona.
166 Pappus adaxially long.
167 Pappus a stiff adaxial auricle.
168 Pappus a large, scarious, adaxial but basally coroniform auricle, as long as the corolla or longer.
169 Pappus a large, scarious, adaxial, flabelliform auricle, as long as the corolla or longer.
170 Pappus scales brownish.
171 Pappus absent in disc cypselas, but present in ray cypselas.
172 Pappus absent in ray and disc cypselas.
173 Testa epidermis cells spirally arranged around the embryo.
174 Testa epidermis cells thick-walled and dark reddish.
175 Embryo sac tetrasporic.
176 Embryo sac disporic.
177 Chromosome number $x=10$.
178 'Irregular' monoterpenes in high concentrations present.
179 Furanosesquiterpenes present.
180 Particular thiophene derivatives present.
181 Amides present.
182 Flavonol 5-glucosides present.
183 Dehydrofalcarinone and dehydrofalcarinol present.
184 Anthocyanin present in root tips.

Habit

The outgroup comprises perennial herbs or half-shrubs, as in many Anthemideae. Throughout the tribe there are scattered annual genera, groups of genera or odd annual species or groups of species within otherwise perennial genera. The annual habit (character 1) is independently derived several times within the Anthemideae. The same holds for the shrubby habit (2), although this condition is less common within the tribe. No species of the Anthemideae grows into a tree. Other uncommon habit characters absent in the outgroup include characters 3-8.

Indumentum

The indumentum of the frequently pubescent Anthemideae commonly consists of unbranched hairs with a few basal stalk cells and a long apical cell. The same type is found in the outgroup and in many other Asteraceae. Occasionally in Anthemideae the hairs form a dense, tomentose to villous, greyish-white indumentum (character 9). In several Anthemideae dolabriform hairs are present (11) comprised of a stalk with few cells and transversely arranged apical cells, so that the hairs are T-shaped or Y-shaped. A distinction between T-shaped and Y-shaped hairs was made by NappZinn \& Eble (1980) but we find it difficult to maintain this distinction. Both types may be present, sometimes mixed together with intermediates. Dolabriform hairs are absent from the outgroup.
In a few genera stellate hairs are present (12), possibly derived from the dolabriform hairs. The stellate hairs also have a stalk of a few cells, but a stellate apical cell. The type is absent from the outgroup.

Glands composed of two parallel rows of cells with the apical pair enlarged are frequent in the Anthemideae, the outgroup and other Asteraceae. The number of cell pairs in the stalk varies, and at first sight there seem to be two types: one with several cells forming a stalk and one with a basal cell pair and an apical enlarged pair forming a sessile gland (cf. for example, Nordenstam, 1976). There are intermediates with two or more basal cell pairs, and hence we find it difficult to separate the two types into separate character states. Thus, we have avoided using any of them as a character. Occasionally, the viscid glands form a dense cover on the plant (10).

Wood anatomy

In Anthemideae-Artemisiinae a number of genera are provided with interxylary cork (character 13; Holmgren et al., 1976; Moss, 1940). Many genera have not been investigated. As far as we know it does not occur in the outgroup.

Foliage

In the majority of the Heliantheae the leaves are opposite. The outgroup of the Anthemideae within Heliantheae and the majority of Anthemideae have alternate leaves. This condition then seems best interpreted as a synapomorphy for the Anthemideae and part of Heliantheae, whereas the secondarily opposite leaf arrangement (character 14) is a character within the Anthemideae.

Variously dissected leaves are characteristic of most Anthemideae and entire leaves are rather rare exceptions. Dissected leaves also characterize the outgroup, and appear
to be a synapomorphy (character 15) comprising the Anthemideae and the outgroup. Entire leaves then represent a reversal in this character. Entire and variously characteristic leaves have been scored as independent characters, particularly 22-26. The mode of leaf dissection is highly variable and difficult to apply at the generic level. Various types may be present within individual genera. We have designated only a few different types as characters which are absent in the outgroup, particularly 16-21.

In Ursiniinae a number of genera have leaves with secretory cavities, present in floral structures but not in the leaves of many other Anthemideae. Secretory cavities are absent in the outgroup.

Inflorescence

The capitula (inflorescences) are usually terminal either singly at the end of a peduncle or aggregated into a variety of corymbose, spike-like or clustered synflorescences. Sometimes the peduncles are structurally reduced so that the capitula are aggregated into central sessile clusters (an aggregated synflorescence) or, on rare occasions, into a single head (a syncephalum). The capitula are solitary or arranged in lax corymbs in the outgroup and commonly in the Anthemideae. They are also frequently arranged in dense corymbs within certain genera (character 29, further modified as 30). Rarely, the capitula are sessile (34) or solitary on nodding peduncles (33). Within the Artemisiinae the corymbose capitulum arrangement is further modified into a long narrow paniclelike or raceme-like synflorescence (31) generally with numerous capitula. The paniculate-like capitulum arrangement is variable and apparently contains a number of different types. The interpretation of these requires a detailed study, and we have only listed one distinct type as a character, the arrangement of the capitula in glomerules on long spikes (32).

Floral and sex arrangement

The array of sex expressions and floral morphology in most Anthemideae were surveyed by Heywood \& Humphries (1977). Radiate, heterogamous capitula with hermaphroditic, perfect disc florets and female ray florets are the plesiomorphic condition, being present in the outgroup. Sometimes the ray florets are neutral but we found this condition difficult to apply as a character at the generic level.

The reduction of the ray florets resulting in discoid, homogamous capitula is common, and has occurred several times within genera. This character (35) has often been used for delimitation of genera, despite its homoplasious nature.

Disciform, heterogamous capitula (36) with central, hermaphroditic florets and outer, female, non-radiate florets occur in several Anthemideae. It is possible to hypothesize two interpretations for discoid and disciform florets. Outer tubular female florets may either be modified central hermaphroditic florets or modified female ray florets. The first hypothesis implies that disciform capitula are derived modifications of discoid capitula. The second hypothesis implies that disciform and discoid capitula may be independently derived from radiate capitula but it is possible also that discoid capitula are derived from disciform capitula by reduction of the outer female florets. For analysis it seemed best to consider discoid and disciform capitula as independent nonadditive characters. After construction of the cladogram, a particular interpretation may be considered the most parsi-
monious, as in the case of the Artemisiinae where discoid capitula are considered derived from disciform capitula. In other subtribes discoid capitula are best interpreted as derived directly from radiate capitula. It was eventually seen that there was no support for the hypothesis that disciform capitula are derived from discoid capitula in any group of Anthemideae.

Within Artemisiinae the central florets may have reduced fertility. In Neopallasia the central florets are heteromorphic. The florets towards the periphery are perfect and the central ones completely sterile with reduced ovaries (91). In the Dracunculus group of the genus Artemisia, central floret ovaries are reduced and the florets are functionally male (106).

Involucre

Involucral shape is variable from widely campanulate to narrowly urceolate. In the outgroup the narrow types are absent, so that narrowly urceolate involucres are derived characters (37) within the Anthemideae. The involucral bracts are arranged in several imbricate series as in the outgroup and many other Asteraceae. Rarely there are 4-7 rows (38), more than in the outgroup, or $1-2$ rows (39). In one genus (Eriocephalus) the involucral bracts are arranged in two distinctly unequal rows without intermediates (40).

In almost all Anthemideae as well as in the outgroup the involucral bracts have scarious margins, otherwise they are generally absent in the Heliantheae. The chaffy bract is one of the main characters (43) which we used to identify the outgroup of the Anthemideae. Sometimes the involucral bracts are wide and flabelliform (41), or have dark brown margins (44), or they are subulate (42), all characters absent in the outgroup.

Receptacle

The receptacle is either paleate or epaleate. Within the Anthemideae the paleate receptacle is plesiomorphic. Formerly the tribe Helenieae was distinguished from Heliantheae by having epaleate receptacles rather than being paleate as in the Heliantheae s.s. Furthermore, the Anthemideae was divided into two subtribes based on receptacular paleae, the paleate Anthemidinae s.l. and the epaleate Chrysantheminae s.l. The homoplasious nature of this character has since long been recognized and the distinction of the Helenieae and the two subtribes of Anthemideae has now been abandoned (see Bremer, 1987).

It seems possible that the epaleate receptacle is a character for a portion of the Heliantheae (s.l.) and Anthemideae. The outgroup of the Anthemideae has epaleate receptacles. Within Anthemideae the presence of a paleate receptacle is hence considered a character (45) despite the fact that it might be under single gene control within certain genera (see Mitsuoka \& Ehrendorfer, 1972).

The shape of the receptacle varies from being flat to convex to conical and ultimately subulate. The latter conditions are absent from the outgroup. Receptacle shape is a potential source of more character information but we have found it difficult to interpret at this stage. It is used as a character (46) for a few genera. Rarely the receptacle is hollow (47), pilose (48) or densely hirsute (49), characters absent in the outgroup. The hairs are scattered over the receptacle and similar to hairs on other parts, so that they cannot be hypothesized as
being modified paleae. Occasionally, the paleae are also pilose (50) and thus the two characters cannot be considered as homologous (failure of the conjunction test, Patterson, 1982; Humphries \& Funk, 1984).

Resin canals

In many genera of the Anthemideae floral parts are frequently invested with resin canals (character 51). They occur in a variety of forms, in the corolla lobes, in style-branches, in cypselas, sometimes in anther tips and often also in the receptacular paleae and involucral bracts. We admit that this generalized character is rather vaguely formulated but offer it as one hypothesis for suggesting the interrelationships of the various subtribes (see discussion below). Resin canals are absent in the outgroup.

Ray florets

The ray corolla limb is yellow in the outgroup and mostly white (character 52) but sometimes yellow in Anthemideae. Glossy golden yellow limbs (53) occur in Leucantheminae and bluish violet limbs (54) in one genus of the Cancriniinae (Allardia), although other colours do occur including pink, orange, and red. Occasionally, the limb is deeply emarginate (55). Baagøe (1977) distinguished a number of epidermal cell types on the ray floret limbs. Within the Anthemideae she recognized two groups, with Helianthoid and Senecionoid/ Mutisioid epidermal cells (56). The former type occurs in the outgroup. The ray floret tube furnishes a number of rather rare characters not present in the outgroup. The tube is sometimes dorsiventrally flattened (58), laterally pilose (also abaxially on the limb; 59), confluent with the cypsela (60), and persistent on the cypsela (61). Occasionally the ray floret tube sinus extends to the base (57), so that logically the tube is absent.

Outer florets in disciform capitula

Outer female florets and disciform capitula are not present in the outgroup. The characters of the outer female florets listed here mostly represent unique specializations within Artemisiinae where the plesiomorphic and disciform genus Ajania serves as an outgroup. Within the Artemisiinae the outer female florets are occasionally subtended by scaphoid bracts (character 64), often their corollas are 'flask-shaped' and tapering above to narrowly cylindrical (65), and rarely the corollas are without teeth (66) or are totally absent (67).

In disciform Anthemideae the outer female florets are sessile and arranged in one row. Rarely in the Matricariinae (Cotula group of genera) they are stalked and arranged in several rows (Soliva), both very peculiar conditions within the family as a whole. The pluriseriate arrangement is common in other tribes, but is most parsimoniously interpreted as an independent character within the Anthemideae.

Disc florets

The corolla of the disc florets provides several characters. In the outgroup and in many Anthemideae the plesiomorphic condition is seen: yellow, glabrous and actinomorphic, with a more or less distinct, unswollen and non-saccate tube, and a 5-lobed limb without veins or resin sacs in the lobes.

Within the Ursiniinae the corolla is often gradually
expanded and funnel-shaped without distinct tubes and limbs (character 69). In Sclerorhachis the limb is contracted at the apex (71). In some genera the corolla is 4 -lobed (72). The lobes may be provided with dorsal appendages (73), continuous veins along the margins (74), with central resin sacs (75) or rarely (Adenoglossa) with marginal resin canals in two of the lobes which are smaller than the other three (76). Rarely the corolla is red (77) or provided with various types of hairs (78-81, 88, 89).
The corolla tube is sometimes thickened in fruit (82), and in one extreme case (Oncosiphon) very thick and brittle (83). It is sometimes saccate basally, adaxially (84) or both abaxially and adaxially (85). In an extreme case (Otanthus) the tube is copiously swollen at the base and spongy, and almost enclosing the cypsela (86). Rarely, the tube may be confluent with the cypsela (87, cf. character 60). Other unusual corolla types are those with long-stalked glands as found in the Ursiniinae (89), and those with very thick vascular strands (90).

Anthers

In the outgroup and in most Anthemideae the anthers are not caudate at the base. This was formerly considered an important character for defining the tribe but anther tails (character 92) are present in a few genera. The apical anther appendages are obtuse to rounded in the outgroup and in most Anthemideae. In the Artemisiinae they are triangular-linear-lanceolate and composed of rather thick-walled cells (93). Sometimes the appendages have an apical resin sac (94). The endothecial tissue in the outgroup and many Anthemideae and other Asteraceae is 'non-polarized', i.e. with the endothecial cell wall thickenings arranged evenly. However, in some Anthemideae (and other Asteraceae) the endothecial tissue is 'polarized' (character 95), with the thickenings arranged apically and basally on the cell (Dormer, 1962).

Pollen

Spiny pollen is the plesiomorphic condition of the Anthemideae occurring also in the outgroup. Within the Artemisiinae there is a gradual reduction of the spines (characters 96 and 97) until a rugose appearance is observed on the exine surface. Such a condition is considered a modification associated with wind-pollination (Wodehouse, 1938). In Adenanthellum, the pollen is hexa-panto-colpororate (98) rather than tricolporate as found generally within the Asteraceae.

Styles

The disc floret style-branches are of the common so-called Senecionoid type: apically penicillate, truncate with parallel stigmatic surfaces. In Prolongoa the apical hairs are rather long (character 103), and Phaeostigma is named after its brownish style-branches (102). In Mausolea (Artemisiinae) the style-branches are not linear as in other disciform Anthemideae but lanceolate, flat and acute (68). Sometimes the style-branches are fused (104) and the style is undivided, a condition associated with functionally male florets.

The style is somewhat bulbous and often situated on a more or less developed stylopodium, as in the outgroup and many Asteraceae. Within Artemisiinae the style base may be slender and parallel-sided (99). Occasionally the stylopodium is large and persistent in fruit (105) and in Heliocauta it is
modified into a lobed nectary (100). In Soliva the style is persistent and spinescent in the mature fruit (101).

Cypselas

The mature and developing cypselas provide a fruitful supply of characters within the Anthemideae (Bruhl \& Quinn, 1990; Giroux, 1933; Humphries, 1976, 1977; Khandzhyan, 1983; Kneisl, 1981; Kynclová, 1970; Wilcox, 1977). In the outgroup the cypselas are sharply angled and provided with a heavily carbonized layer. This layer is never present in the Anthemideae but it is widespread throughout the Heliantheae. The reduction of the carbonized layer can be interpreted as a synapomorphy (character 151) for the Anthemideae as a whole. The cypselas of Anthemideae can also be terete to weakly angled, or flattened (107) and modified in various ways. The characters 108-113 relate to different cypsela shapes unique to the ingroup. The cypselas are sometimes much flattened, dorsiventrally (characters 114 and 115) or laterally (116), and the flattened cypselas are often winged (117-122).
Cypselas without a pappus are apically rounded or truncate as in the outgroup, or sometimes provided with an apical rim. It is difficult to say whether this rim is homologous with a short coroniform pappus or is an independent outgrowth of the cypsela wall. We have avoided coding it as a character. In Oncosiphon the cypsela rim is distinctly abaxial (123) and seems to be a unique structure.
The presence, number and arrangement of cypsela ribs is very variable. Cypselas with five or four evenly arranged ribs are common and may be plesiomorphic within the tribe. The cypsela ribs are difficult to interpret since similar ribs are absent from the outgroup. Characters 124-129 represent specialized rib structures within Anthemideae. The cypsela ribs are sometimes furnished with resin canals or sacs (131-133, 136, 137), not present in the outgroup. Rarely resin sacs are scattered over the cypsela (138). Within the Leucantheminae, the Leucanthemum group is characterized by a unique cypsela type with vallecular resin canals (134) of a particular flattened type and vallecular vascular strands (135), situated in the valleys between the ribs, not inside the ribs (costal) as in other Anthemideae (Briquet, 1916; Briquet \& Cavillier, 1916; Giroux, 1933).
Frequently the cypselas are furnished with myxogenic cells within the Anthemideae but the character never occurs in the outgroup. However, it is difficult to apply the presence of myxogenic cells as a simple presence or absence character as it is homoplasious within the tribe as a whole. The myxogenic cells are commonly situated along the ribs and this appears to be the plesiomorphic arrangement. Other particular distributions of the myxogenic cells may serve as characters (139-141, 143). Characters 142 and 144 represent unique myxogenic cell shapes, quite different from the common type which consists of transversely compressed cells in elongated rows.

The cypselas of the Anthemideae are generally smooth and glabrous or sometimes covered with scattered glands. Glabrous and sparsely to rather densely hirsute cypselas are found in the outgroup. Papillose cypselas (145) and cypselas with other types of indumentum not present in the outgroup are those represented by characters 146-150.

The cypsela wall is sometimes several cell layers thick and partially or completely sclerified (152). In other cases it is very thin (characters 154 and 155). The intermediate condition is common and present in the outgroup. The anatomy of
the cypsela wall is a potential source of more character information but detailed investigations of the appropriate genera are necessary. The investigations by Reitbrecht (1974) need to be expanded and performed in more detail (see Bruhl \& Quinn, 1990 on the 'Cotuleae'). Characters 156, 159 and 160 represent unique specializations within the Anthemideae (Källersjö, 1986, 1988). The cells of the cypsela wall usually contain isodiametric druses as in many Asteraceae. Rarely they are numerous (158) and in Prolongoa they are replaced by rod-shaped crystals in small packets (157).

Pappus

In the Anthemideae the cypselas are generally without a pappus or provided with a coroniform or scaly pappus. True bristles, which are never flattened and occur in other tribes, are never present. Such bristles are absent also from the outgroup, where the pappus, if present, consists of large whitish scales or numerous whitish, long, flat bristles (more properly bristle-like linear scales). Similar pappus types are present in Ursiniinae (Ursinia) and Cancriniinae and we assume that the presence of large or long-whitish pappus scales are plesiomorphic within the tribe. The five convolutecontorted pappus scales (character 164) of Ursinia seem to be unique for that genus, although the large size and the whitish colour appear to be plesiomorphic. A reduced or lost pappus is represented by characters 161,171 and 172 within the Anthemideae. The coroniform pappus is either derived from fusion of the individual pappus scales or is an independent character unique to the Anthemideae. If we adopt the latter hypothesis, logically the coroniform pappus seems to be a plesiomorphic condition within the Anthemideae, excluding Ursiniinae and Cancriniinae, whereas specialized corona types and auricles are apomorphic, particularly as seen with characters 162,163 and 165-170.

Testa

Testa epidermal types were investigated by Kneisl (1981), but the results are difficult to interpret. The testa epidermis cells are normally well developed with sinuose cells. Sometimes the testa collapses during maturation of the fruit. Rarely the testa epidermis cells are uniquely specialized, much elongated and spirally arranged around the embryo (character 173) or thick-walled and dark reddish (174).

Embryology

The Anthemideae have been fairly thoroughly investigated compared to many other tribes, by Harling (1950, 1951, 1960). Tetrasporic embryo sacs (character 175) unambiguously characterize a number of genera, and disporic embryo sacs (176) are reported as unique within Argyranthemum (Borgen, 1972). Harling also described development of the embryo sacs in detail but the variation is difficult to formulate into characters.

Chromosome numbers

The Anthemideae have been investigated based on the surveys of Federov (1969), Moore (1972, 1973, 1977), and Goldblatt $(1980,1981,1984) . \mathrm{X}=9$ is the base number for the tribe. Most genera have either a diploid number of $2 \mathrm{n}=18$ or $2 \mathrm{n}=36$. Cancrinia has a base number of $\mathrm{x}=7$, Ursinia a base
number of $\mathrm{x}=7,8$, and Artemisia a series based on $\mathrm{x}=5,6,7$, 8 and 9. The highest values have been recorded in Leptinella with $2 \mathrm{n}=312$ (Lloyd, 1972a). Most series and most variants are aneuploid or polyploid series within genera and variation is of little use for classification at the generic level. However, it appears that the base number of $x=10$ (character 177) as opposed to $x=9$ is plesiomorphic to a number of genera in the Thaminophyllinae and Matricariinae (Cotula group).

Chemistry

Chemical characters are difficult to utilize because they are mostly collected on a sporadic basis for one or two species within a genus. Furthermore, it is rare to find phytochemical papers that report absence traits as well as presence of a chemical. However, the Anthemideae are well-known for accumulating herbal and insecticidal chemicals and relative to many angiosperms have been richly studied (Greger, 1975, 1977; Bohlmann et al., 1973). For systematic purposes available chemical evidence suggests that sesquiterpene lactones (character 179), flavonoids (182), particularly C-glycosyl flavones (Valant-Vetschera, 1981, 1982, 1985) and polyacetylenes (183) are of most systematic value (Greger, 1977; Tétényi, 1986).

Presence of a chemical character has been scored at generic rank even though it is acknowledged that investigation has been sporadic, particularly with the larger genera, such as Artemisia. The scores thus represent hypothetical presence for all the species. Different compounds within the same class of compounds have been combined into a single score for polyacetylenes (183) and furanosesquiterpenes (179) when the class compound is considered apomorphic for a particular group. Red coloured root tips, due to the presence of anthocyanin (184) has been recorded in Leucanthemum (Favarger, 1966).

DISTRIBUTION

The approximate total range of the Anthemideae is summarized in Table 3 and the general distribution of subtribes and genera given in Tables 3, 5, 7, 9, 11, 14, 16, 18, 20, 22 and 24; see taxonomic text below. The Anthemideae tribe has a worldwide distribution but with main concentrations of taxa in Central Asia, the Mediterranean region and South Africa. Some members of the subtribes Ursiniinae, Artemisiinae, Chrysantheminae, Leucantheminae, Anthemidinae, and Matricariinae are pernicious weeds, such as some of the Ursinia species introduced to Australia and New Zealand, and species of Chrysanthemum, Anthemis, Artemisia, Achillea, Leucanthemum, Tripleurospermum and Matricaria as more widespread weeds in both the northern and southern hemispheres. However, most taxa have discrete ranges and very obvious areas of endemism. The Thaminophyllinae, for example, occur only in South Africa. Similarly most Ursiniinae are almost entirely restricted to South Africa, although one species of Ursinia occurs in Ethiopia and another species of Lasiospermurn is found in the Sinai region of Egypt.

The Gonosperminae is a small subtribe of three genera and 15 species which displays a presumably relictual distribution pattern. Gonospermum and Lugoa are endemic to the Canary Islands but have a curious disjunct distribution pattern with their sister genus, Inulanthera, which has ten species

Table 3 Summary of geography and natural distribution of the Anthemideae.

Number of genera	N.Am. 8	Eur- Asia 25	$\begin{aligned} & \text { C.\& E. } \\ & \text { Asia } \\ & 38 \end{aligned}$	SW Asia 13	S.Eur 28	N.Afr 38	S.Afr 29	Austr. N.Zeal. 3	S.Am. 4
Ursiniinae						2	8		
Cancriniinae			6	1					
Tanacetinae	1	2	6	2	1	1			
Gonosperminae						2	1		
Handeliinae		5	4						
Artemisinae	4	4	15	4	2	1	1		1
Achilleinae		5	2	2	5	7			
Anthemidinae		1		1	1	1			
Chrysantheminae		1		1	2	4			
Leucantheminae		3	2		12	11			
Thaminophyllinae							5		
Matricariinae	3	4	3	2	5	10	14	3	3

in southern Africa, mainly in Natal, but with one species also occurring in Madagascar.

The majority of the remainder of the tribe occur in the northern hemisphere. For example, the Chrysantheminae are most prominent in North Africa and Macaronesia, although the two well-known species of Chrysanthemum, C. coronarium and C. segetum are widespread throughout the northern hemisphere. Indeed, C. coronarium is cultivated widely as a salad vegetable in China. By contrast, the Leucantheminae are found in Eurasia and North Africa, and are particularly concentrated in the Mediterranean region. The Achilleinae is more of a Eurasian group with some of the more distinctive taxa endemic to North Africa, southern Europe, the Mediterranean, and South-West Asia, although there are some outlying taxa occuring in North America. The 'Tanacetinae' are well-represented in Eurasia and especially in central Asia but there are some interesting endemics which occur also in North America and North Africa. The Cancriniinae and Handelinae are comprised of eleven genera and thirty-four species restricted entirely to the central steppes of Asia. The Artemisiinae and Matricariinae are the most widespread subtribes. The Artemisiinae which comprise about a third of the tribe, with 18 genera and more than six hundred species currently recognized, have a worldwide distribution but occur mainly in the northern hemisphere and especially central and eastern Asia. The Matricariinae, comprised of 25 genera and about 250 species, also has a worldwide distribution but most genera occur in the Mediterranean region and South Africa.

KEY TO GENERA

Capitula pedunculate .. 5
5 Pappus of 5 (rarely 8-10) large obovate scales and sometimes 5 additional subulate scales (pappus rarely absent in Ursinia trifida, a South African shrub with linear, entire or apically few-lobed leaves) .. 1. Ursinia Pappus a shallow corona, an auricle or rarely of few small scales, or absent 6

6 Disc cypselas 5 -ribbed, without pappus; ray cypselas flat and sterile with a few pappus scales; leaves serrate
63. Lepidophorum Cypselas equal, without or with a coroniform or auriculiform pappus; leaves various

7
7 Cypselas obovoid without distinct ribs or wings 8 Cypselas angled or ribbed or prismatic, often turbinate, sometimes tuberculate; or cypselas flattened and with 2 lateral ribs or wings 9

8 Leaves few-lobed or entire 53. Mecomischus Leaves pinnatifid to pinnatisect 54. Chamaemelum

9 Cypselas dorsiventrally flattened and with 2 lateral ribs or broad wings

10 Cypselas various, sometimes dorsiventrally flattened but then rhombic in cross-section and not or only narrowly winged
57. Anthemis

10 Cypselas with 2 lateral more or less distinct ribs but no wings
50. Achillea Cypselas with 2 lateral wings 51. Anacyclus

11 Pappus of 5 (rarely 8-10) large obovate scales and sometimes 5 additional subulate scales.

1. Ursinia Pappus a shallow corona, an auricle, or of small scales, or absent

12
12 Cypselas copiously villous
2. Lasiospermum Cypselas glabrous, sometimes glandular or papillose

13
13 Involucral bracts in 2 unequal series; one outer row of pubescent to glabrescent bracts and one inner row of generally densely villous bracts 108. Eriocephalus Involucral bracts imbricate and subequal, not in 2 unequal series

14 Shrubs with opposite leaves (leaves alternate in Eumorphia davyi, a South African shrub with linear, closely set leaves); cypselas with 10 or more ribs
4. Eumorphia Herbs or rarely shrubs with alternate leaves (rarely with some leaves opposite basally on the stems); cypselas various 15
15 Suffruticose perennial with large leaves with rounded lobes and
corymbose capitula; cypselas 5 -ribbed with pappus of small scales projected from the ribs 22. Lugoa Habit and cypselas various but leaves not large and with rounded lobes and pappus if present not of scales projected mainly from the ribs 16

16 Cypselas obovoid, without distinct ribs or wings 17 Cypselas angled or ribbed or prismatic, often turbinate, sometimes tuberculate; or cypselas flattened and with 2 lateral ribs or wings

18
17 Leaves few-lobed or entire
53. Mecomischus

Leaves pinnatifid to pinnatisect
54. Chamaemelum

18 Cypselas dorsiventrally flattened and with 2 lateral ribs or broad wings 19 Cypselas various, sometimes dorsiventrally flattened but then rhombic in cross-section and without 2 lateral ribs and not or only narrowly winged

21
19 Cypselas with 2 lateral more or less distinct ribs but no wings .. 50. Achillea Cypselas with 2 lateral wings .. 20

20 Leaves vermiform; disc corolla tube deeply and equally saccate both adaxially and abaxially 52. Leucocyclus Leaves pinnatisect; disc corolla tube adaxially slightly saccate
51. Anacyclus

21 Leaves serrate-dentate, rarely pinnatifid or entire; anthers caudate ... 79. Osmitopsis Leaves pinnatisect to variously lobed; anthers not caudate
57.Anthemis

22 Pappus present, of scales, an auricle or a corona 23 Pappus absent, but cypselas sometimes apically with an obtuse rim (rarely with a pseudopappus of bristle-like stalked glands in Athanasia) 28
23 Pappus of 5 (rarely 8-10) large obovate scales and sometimes 5 additional subulate scales 1. Ursinia Pappus a shallow corona, an auricle or of small scales 24
24 Capitula solitary or laxly corymbose
57. Anthemis Capitula densely corymbose

25
25 Glabrous annual herb; cypselas with 1 adaxial and 2 lateral ribs and with a single secretory cavity apically in the adaxial rib ... 97. Lonas More or less pubescent shrubs; cypselas 5-10-ribbed with or without several secretory cavities in the ribs
26 Capitula narrowly oblong-obconical, slender, and few-flowered; indumentum of stellate hairs
6. Hymenolepis Capitula rather widely urceolate to cyathiform-campanulate; indumentum of simple or bifid hairs 27

27 Cypselas 5-ribbed; anthers not caudate
23. Gonospermum Cypselas 8-10-ribbed; anthers caudate 24. Inulanthera

28 Cypselas copiously villous
2. Lasiospermum

Cypselas glabrous, sometimes glandular
29
29 Involucral bracts in 2 unequal series; one outer row of pubescent to glabrescent bracts and one inner row of generally densely villous bracts
108. Eriocephalus Involucral bracts imbricate and subequal, not in 2 unequal series 30
30 Leaves entire or crenate, covered with a dense greyish-white indumentum; corolla tube basally copiously swollen and spongy, almost enclosing the cypsela especially laterally
49. Otanthus Leaves various; corolla tube not or somewhat swollen and spongy but not enclosing the cypsela

31 Cypselas obovoid without distinct ribs or wings 32 Cypselas angled or ribbed or prismatic, often turbinate, sometimes tuberculate; or cypselas flattened and with 2 lateral ribs or wings 34

32 Capitula numerous in a long panicle 41. Seriphidium Capitula solitary or laxly corymbose or few closely together 33

33 Capitula almost sessile along the stems 55. Rhetinolepis Capitula pedunculate 54. Chamaemelum
34 Cypselas dorsiventrally flattened and with 2 lateral ribs or broad wings .. 35 Cypselas various, sometimes dorsiventrally flattened but then rhombic in cross-section and not or only narrowly winged . 37

35 Cypselas with 2 lateral more or less distinct ribs but no wings

36 Cypselas with 2 lateral wings 51. Anacyclus
36 Leaves mainly rosulate and capitula solitary; cypselas actually $4-5$-ribbed though with 2 major lateral ribs 21. Heliocauta Leaves alternate and capitula often corymbose, rarely solitary; cypselas with 2 lateral ribs only
50. Achillea

37 Shrublets; corolla basally saccate around the cypsela especially adaxially
48. Santolina Herbs or shrubs; corolla not saccate basally 38

38 Shrubs with stellate hairs if present; corolla gradually expanded and funnel-shaped
7. Athanasia Herbs or half-shrubs with simple or bifid hairs; corolla more or less distinctly divided into tube and limb 39

39 Basally villous perennials with much pinnatisect, mainly basal leaves; cypselas 4-5-ribbed .. 40 Indumentum various but not mainly basal and villous; annuals or perennials; leaves and cypselas various
57. Anthemis

40 Stems few-branched, leafy and with terminal corymbs 28. Handelia Stems loosely branched, almost leaf-less with terminal capitula .. 29. Sclerorhachis
41 Capitula radiate; rays present 42
Capitula discoid or disciform; rays absent
109
42 Rays yellow, rarely partly white or reddish or abaxially reddish 43 Rays white, rarely pink to reddish, bluish violet or creamy orange, but not yellow

62
43 Pappus present in ray or disc cypselas or generally in all cypselas, of scales, an auricle or a corona (sometimes almost absent in Tanacetum but cypselas then apically with an acute rim) 44 Pappus absent but cypselas sometimes apically with an obtuse rim (in Argyranthemum sometimes with pappus-like apically projected cypsela wings)
.54
44 Cypselas densely pilose; pappus of 4-12 white scales at least half as long as the corolla
9. Trichanthemis Cypselas glabrous, sometimes glandular; pappus of short scales, a corona or an auricle

45
45 Cypselas dorsiventrally flattened and with 2 lateral broad wings; an annual herb with entire, fleshy leaves 101. Adenoglossa Cypselas various, sometimes dorsiventrally flattened but then not or only narrowly winged and often rhombic in crosssection

46

$$
46 \text { Disc corolla 4-lobed; leaves entire 81. Inezia }
$$

47 Cypselas with 1 adaxial and 2 lateral distinct ribs, abaxially with
or without 2 weaker ribs; pappus coroniform if present 48 Cypselas various, generally with 5 or more ribs and not with 3 major adaxial-lateral ribs; pappus and habit various 49

48 Leaves pinnatifid-pectinate; cypselas with 3 adaxial-lateral thick ribs and 2 abaxial weaker ribs; pappus absent in disc cypselas but present in ray cypselas
70. Prolongoa Leaves pinnatisect; cypselas with 3 adaxial-lateral acute ribs; pappus present in both disc and ray cypselas . 94. Endopappus
49 Cypselas 8-12-ribbed with dark vallecular secretory canals between the pale ribs; annuals 50 Cypselas angled, prismatic or ribbed, but vallecular secretory canals absent; annuals or perennials 53

50 Pappus a scarious, adaxial, flabelliform auricle, as long as the corolla or longer
76. Glossopappus Pappus a corona, a short auricle, or absent 51
51 Leaves lobed, often trifurcate; disc cypselas with a stiff coroniform pappus
75. Chrysanthoglossum Leaves serrate-dentate; disc cypselas without or with a scarious, coroniform or auriculiform pappus 52
52 Rays golden yellow; cypselas arcuate with the ribs basally and adaxially fused into a more or less distinct callus
77. Coleostephus

Rays pale yellow; cypselas ellipsoid without a basal callus
73. Leucoglossum

53 Cypselas with myxogenic cells on the ribs; pappus a scarious flimsy corona; creeping or caespitose suffruticose perenni-
 Cypselas without myxogenic cells; habit and pappus various
15. Tanacetum

54 Ray cypselas triquetrous, winged; disc cypselas laterally flattened and adaxially and abaxially winged or sometimes terete to prismatic ... 55 Cypselas equal, oblong or obovoid, without wings, or dorsiventrally flattened and laterally winged

55 Shrubs or shrublets 62. Argyranthemum
Annual herbs
56
56 Plant covered with viscid hairs; cypsela wings projected to apical spines 60. Heteranthemis Plants not viscid; cypsela wings if present not projected to apical spines

57 Disc corolla red; disc cypselas laterally flattened and adaxially and abaxially winged
61. Ismelia

Disc corolla yellow; disc cypselas prismatic with a narrow adaxial wing or terete and apparently ribbed

59. Chrysanthemum

58 Disc corolla 4-lobed; rays not true ray florets but outer disc florets with one corolla lobe expanded to a limb; cypselas dorsiventrally flattened
103. Cotula Disc corolla 5-lobed; rays true ray florets with apically 3-lobed limbs; cypselas oblong or obovoid
59 Cypselas distinctly ribbed with dark vallecular secretory canals between the pale ribs 71. Leucanthemum Cypselas distinctly or faintly ribbed but vallecular secretory canals absent

60 Basally much woody shrublets with few-lobed leaves with linear lobes
30. Brachanthemum Herbs or half-shrubs; leaves generally with rather broad lobes .. 61

61 An annual herb with few-lobed leaves 33. Tridactylina Perennials; leaves various 31. Dendranthema
62 Pappus present at least in ray cypselas, of scales (bristle-like in

Allardia), an auricle or a corona (sometimes almost absent in Tanacetum but cypselas then apically with an acute rim) ... 63 Pappus absent but cypselas sometimes apically with an obtuse rim (mainly abaxial and somewhat toothed in Oncosiphon; cypselas in Argyranthemum sometimes with pappus-like apically projected wings)

88
63 Pappus of 4-12 linear to obovate-oblong scales at least half as long as the corolla, or of many bristle-like scales as long as the corolla or longer 64 Pappus of short scales, an auricle or a corona..............
64 Pappus of 4-12 scales half to equalling the corolla in length; rays white or sometimes pink

65 Pappus of many bristle-like scales equalling or exceeding the corolla in length; rays often bluish-violet, sometimes white or pink
12. Allardia

65 Cypselas densely pilose; pappus scales white
9. Trichanthemis Cypselas glabrous, glandular; pappus scales brownish
11. Richteria

66 Cypselas 8-12-ribbed with dark vallecular secretory canals between the pale ribs

67 Cypselas angled, prismatic or often ribbed, but vallecular secretory canals absent

69
67 Annuals; cypselas $c .1 \mathrm{~mm}$ long 73. Leucoglossum Perennials; cypselas more than 1 mm long 68

68 Leaves entire or serrate or pinnatifid, sessile; cypsela ribs rounded
71. Leucanthemum Leaves trifid or ternate-pinnatifid and seemingly petiolate; cypsela ribs narrow and somewhat wing-like
72. Rhodanthemum

69 Cypselas triquetrous with 1 adaxial and 2 lateral more or less thick ribs and sometimes with 1-2 abaxial weaker ribs, abaxially and apically with 2 distinct (occasionally fused to 1 or $3-5$) resin sacs 98. Tripleurospermum Cypselas various, sometimes triquetrous with 3 adaxial-lateral ribs but not with 2 abaxial-apical resin sacs 70

70 Annual herbs ... 71
More or less suffruticose perennials, shrublets or shrubs ... 81
71 Cypselas laterally pilose; pappus a fimbriate whitish corona (disc cypselas) or auricle (ray cypselas) 93. Microcephala Cypselas glabrous; sometimes glandular; pappus various ... 72
72 Ray cypselas dorsiventrally flattened and laterally winged; disc cypselas 5-ribbed
91. Daveaua Cypselas equal or subequal, sometimes somewhat flattened but not winged, variously ribbed

73
73 Cypselas somewhat dorsiventrally flattened and with 2 lateral weak ribs; corolla lobes with central resin sacs
99. Aaronsohnia

Cypselas with 3 or more, sometimes adaxial, more or less distinct ribs, sometimes slightly flattened; corolla lobes without or sometimes with central resin sacs (in Matricaria) 74

74 Cypselas with 1 abaxial (not adaxial) and 2 lateral thick ribs and 2-3 adaxial weaker ribs; pappus an adaxial stiff auricle
89. Otospermum

Cypselas with mainly adaxial-lateral ribs or with ribs all around the cypsela; pappus of scales, a scarious auricle or a corona . 75

75 Cypsela wall and pappus white and spongy, abaxially thin 96. Foveolina Cypsela wall not white and spongy, pappus scarious 76
76 Cypselas with 1 adaxial and 2 lateral distinct ribs, abaxially with or without 2 weaker ribs, or cypselas with 5 adaxial-lateral
ribs .. 77
Cypsela ribs all around the cypsela, not mainly adaxiallateral

79

77 Cypselas with 1 adaxial and 2 lateral distinct ribs, abaxially with or without 2 weaker ribs; pappus of scales or a stiff corona . 78 Cypselas with 5 adaxial-lateral ribs; pappus an auricle or a small corona
92. Matricaria

78 Cypselas with 3 adaxial-lateral rounded ribs and 2 abaxial weaker ribs, often with 3-5 resin sacs apically in the ribs; pappus of 7-10 obovate scales 90. Heteromera Cypselas with 3 adaxial-lateral acute ribs; pappus a stiff corona
94. Endopappus

79 Pappus a scarious, flimsy corona; cypselas with myxogenic cells on the ribs; leaves pinnatifid-pectinate, spathulate in outline 69. Hymenostemma Pappus coroniform, of short more or less connate scales, or an auricle; cypselas with or without myxogenic cells; leaves various

80
80 Cypselas obconical-turbinate, generally with myxogenic cells; slender annuals with several stems from a basal rosette (Anthemis subgen. Ammanthus)
57. Anthemis Cypselas more or less oblong, without myxogenic cells; habit various
15. Tanacetum

81 More or less suffruticose perennials 82
Woody shrubs or shrublets ... 84
82 Cypselas with myxogenic cells on the ribs 83
Cypselas without myxogenic cells
15. Tanacetum

83 Pappus a scarious, flimsy corona; leaves serrate to pinnatifid, generally pectinate and spatulate in outline
68. Leucanthemopsis Pappus of separate, mainly abaxial scales; leaves pinnatisect
16. Opisthopappus

84 Cypselas dorsiventrally flattened and laterally winged 100. Leucoptera

Cypselas more or less terete, not winged
85
85 Leaves obovate and apically serrate 64. Nipponanthemum Leaves pinnatisect to variously lobed 86

86 Pappus an adaxially longer cup, or one large adaxial and one smaller abaxial scale; cypselas with myxogenic cells
84. Cymbopappus Pappus a small corona, of several scales or an adaxial auricle; cypselas with or without myxogenic cells

87
87 Cypselas with myxogenic cells; pappus of several adaxially longer scales
18. Xylanthemum Cypselas without myxogenic cells; pappus a corona of small scales or an adaxial auricle
15. Tanacetum

88 Ray cypselas triquetrous, winged; disc cypselas laterally flattened and adaxially and abaxially winged

89 Cypselas generally equal, sometimes triquetrous or dorsiventrally (not laterally) flattened and laterally (not adaxially and abaxially) winged

90
89 Annual herb
Shrubs or shrublets
61. Ismelia
62. Argyranthemum

90 Disc corolla 4-lobed .. 91
Disc corolla 5-lobed
97
91 Leaves entire, lanceolate to linear 83. Thaminophyllum Leaves variously lobed or pinnatisect, not entire

92
92 Disc corolla tube very much swollen and brittle
88. Oncosiphon

Disc corolla tube not or only slightly swollen
93

93 Delicate, somewhat succulent, annual herb; leaves with rounded lobes; capitula small, 5 mm or less in diam.
58. Nananthea

Annuals or perennials; leaves various; capitula generally more than 5 mm in diam.

94
94 Leaves with few, oblong to rounded, apically mucronate lobes; receptacle pilose
82. Lidbeckia

Leaves variously pinnatisect; receptacle glabrous 95
95 Cypselas with 5 adaxial-lateral ribs, somewhat flattened; annuals .. 92. Matricaria Cypselas flattened and with 2 lateral ribs, or obovoid and with 2-3 faint ribs; perennials or rarely annuals

96 Shrub; cypselas subglobose with 2-3 adaxial faint ribs
102. Hilliardia Herbs; cypselas dorsiventrally flattened and with 2 lateral ribs ... 103. Cotula
97 Leaves opposite ... 98 Leaves alternate ... 99

98 Shrubs with entire or few-lobed leaves 4. Eumorphia Creeping, suffruticose perennials with serrate-pinnatifid leaves .. 67. Phalacrocarpum

99 Cypselas triquetrous, with 1 adaxial and 2 lateral more or less thick ribs and sometimes with 2 abaxial weaker ribs, abaxially and apically with 2 distinct (occasionally fused to 1 or 3-5) resin sacs 98. Tripleurospermum Cypselas various, generally with 5 or more ribs, or with 2 lateral ribs only

100
100 Cypselas somewhat dorsiventrally flattened, with 5 adaxial ribs or with 2 lateral ribs only 101 Cypselas more or less terete with 5 or more ribs all around the cypsela

102
101 Cypselas smooth, with 2 lateral weak ribs 99. Aaronsohnia Cypselas with 5 adaxial-lateral ribs 92. Matricaria

102 Cypselas distinctly ribbed with dark vallecular secretory canals between the pale ribs 71. Leucanthemum Cypselas distinctly or faintly ribbed but vallecular secretory canals absent 103

103 Disc corolla tube confluent with the cypsela; cypsela ribs with resin canals; leaves serrate 80. Adenanthellum Disc corolla tube not confluent with the cypsela; cypsela ribs without resin canals; leaves various 104

104 Cypselas 10-18-ribbed with ovoid myxogenic trichomes; shrubs or half-shrubs with entire or few-lobed leaves
3. Phymaspermum Cypselas generally with less than 10 ribs, with or without appressed myxogenic cells but not with ovoid myxogenic trichomes; habit and leaves various

105
105 Annual herb with lobed, rather lacerate leaves; cypselas without myxogenic cells
66. Nivellea Perennials; leaves various; cypselas with or without myxogenic cells 106

106 Basally much woody shrublets with few-lobed leaves with linear lobes
30. Brachanthemum Herbs or half-shrubs generally with rather broad leaf-lobes or with linear or serrate leaves107

107 Cypselas oblong, more or less distinctly ribbed, without myxogenic cells .. 108 Cypselas obovoid, faintly ribbed, mostly with myxogenic cells 31. Dendranthema

108 Leaves mostly rosulate; ray florets fertile . 32. Arctanthemum Leaves alternate; ray florets sterile 65. Leucanthemella

109 Cypselas triquetrous with 1 adaxial and 2 lateral more or less thick ribs and sometimes with 2 abaxial weaker ribs, abaxially and apically with 2 distinct (occasionally fused to 1 or 3-5) resin sacs 98. Tripleurospermum Cypselas various, sometimes triquetrous with 3 adaxial-lateral ribs but not with 2 abaxial-apical resin sacs 110
110 Pappus present, of scales (bristle-like in Ugamia), an auricle or a corona (rarely almost absent in Tanacetum but cypselas then apically with an acute rim)

111 Pappus absent but cypselas sometimes apically with an obtuse rim (mainly abaxial and somewhat toothed in Oncosiphon; rarely with a pseudopappus of bristle-like stalked glands in Athanasia)

138
111 Annual herbs ... 112 Perennial herbs or often half-shrubs, shrublets or shrubs 120

112 Cypselas conspicuously rugose to tuberculate, without ribs, apically with a thick, spreading to revolute pappus-like rim 87. Rennera Cypselas often ribbed and not rugose to tuberculate, or if rugose then also with 3 distinct adaxial-lateral ribs; pappus of scales, a corona (but not thick and spreading to revolute) or an auricle 113

113 Cypselas somewhat dorsiventrally flattened and with 2 lateral weak ribs; corolla lobes with central resin sacs
99. Aaronsohnia

Cypselas with 3 or more, sometimes adaxial, more or less distinct ribs, sometimes slightly flattened; corolla lobes without or sometimes with central resin sacs (in Matricaria) 114

114 Cypselas laterally pilose; pappus a fimbriate whitish corona .. 93. Microcephala Cypselas glabrous, sometimes glandular; pappus various . 115
115 Cypsela wall and pappus white and spongy, abaxially thin ...
96. Foveolina

Cypsela wall not white and spongy; pappus scarious 116
116 Cypselas with 1 adaxial and 2 lateral distinct ribs, abaxially with or without 2 weaker ribs, or cypselas with 5 adaxial-lateral ribs 117 Cypsela ribs all around the cypsela, not mainly adaxiallateral 118

117 Cypselas with 1 adaxial and 2 lateral more or less thick ribs; pappus a stiff corona covered with myxogenic cells 95. Myxopappus Cypselas with 5 adaxial-lateral ribs; pappus an auricle or a small corona
92. Matricaria

118 Cypselas with dark vallecular secretory canals between the pale ribs and with myxogenic cells on the ribs; pappus an adaxial but basally coroniform auricle as long as the corolla or longer
74. Chlamydophora Cypselas without vallecular secretory canals, with or without myxogenic cells; pappus of small scales, a small corona or auricle 119

119 Cypselas obconical-turbinate, generally with myxogenic cells; slender annuals with several stems from a basal rosette (Anthemis subgen. Ammanthus) 57. Anthemis Cypselas more or less oblong, without myxogenic cells; habit various 15. Tanacetum

120 Pappus of 4-15 linear and bristle-like to obovate-oblong scales at least half as long as the corolla 121 Pappus of short scales, an auricle or a corona 123 121 Cypselas densely pilose; pappus scales white 122 Cypselas glabrous or sparsely pilose; pappus scales brownish 13. Cancrinia

122 Capitula on short, nodding peduncles
10. Ugamia Capitula on elongated, straight peduncles or pedunculoid stems
9. Trichanthemis

123 Cypselas with dark vallecular secretory canals between the pale ribs and with myxogenic cells on the ribs; pappus an adaxial auricle .. 78. Plagius Cypselas without vallecular secretory canals; pappus of scales, a corona or sometimes an auricle
124 Capitula small and numerous in an elongated panicle or a large corymb; basally villous and woody perennials with much pinnatisect leaves 125 Capitula and leaves various, sometimes small and rather many in a panicle or corymb but plant then not basally villous with much pinnatisect leaves; perennial herbs, half-shrubs, shrublets or shrubs

126
125 Capitula in an elongated panicle
25. Lepidolopsis

Capitula in a large corymb 26. Polychrysum
126 Capitula paniculate; leaves apically few-lobed or entire
42. Crossostephium Capitula solitary or laxly to densely corymbose or closely aggregated; leaves various

127
127 A compact, hirsute, basally woody half-shrub with solitary, pecunculate capitula; cypselas distinctly 10 -ribbed with a coroniform pappus of short wide scales .
14. Cancriniella Habit and cypselas various, often perennial herbs or shrubs

128
128 Capitula closely aggregated at the stems; leaves small, ericoid, entire or occasionally few-lobed; pappus of 7-10 oblong, adaxially longer scales 86. Marasmodes Capitula solitary or laxly to densely corymbose; leaves and pappus various

129
129 Capitula narrowly oblong-obconical, slender and few-flowered; pubescent shrubs; indumentum of stellate hairs
6. Hymenolepis Capitula generally urceolate to cyathiform or campanulate; habit various; indumentum if present of simple or bifid hairs .. 130
130 Shrub with corymbose capitula and pinnatisect leaves; cypselas 8 -10-ribbed; pappus of small scales projecting from the cypsela ribs ... 24. Inulanthera Pappus of scales not distinctly projecting from the cypsela ribs, a corona or an auricle; habit and cypselas various

131
131 Pollen smooth; a small densely pubescent, basally woody perennial with solitary or few capitula on short peduncles (Sphaeromeria compacta)
39. Sphaeromeria

Pollen spiny; habit and capitula various
132
132 Shrublets with entire or 3-lobed leaves; capitula rather narrowly urceolate with involucral bracts in 5-7 rows; pappus of many subulate scales
19. Lepidolopha Habit, capitula and pappus various, if shrubby with entire or 3-lobed leaves (some Pentzia species), then not with involucral bracts in 5-7 rows and not with a pappus of subulatc scales 133

133 Capitula disciform; outer female florets present; cypselas without myxogenic cells
15. Tanacetum Capitula discoid; all florets hermaphrodite; cypselas with or without myxogenic cells

134
134 Corolla tube generally swollen and with thick vascular strands; shrubs with more or less ericoid leaves 85. Pentzia Corolla tube not or only slightly swollen and with thin vascular strands; habit and leaves various 135
135 Pappus an adaxial auricle or of several adaxially more devel-
oped scales .. 136 Pappus a corona or of scales, adaxially not more developed
136 Perennial herbs with corymbose capitula 15. TanacetumShrublets with solitary capitula18. Xylanthemum
137 Leaves entire but marginally crenate-serrate; perennial herb(Tanacetum balsamita)15. TanacetumLeaves pinnatisect; habit various138 Leaves opposite; shrubs with sessile or corymbosecapitula139
Leaves alternate, rarely opposite but then habit or capituladifferent140
139 Leaves entire; capitula sessile 8. Asaemia
Leaves pinnatifid; capitula corymbose 5. Gymnopentzia
140 Capitula solitary or in lax to dense corymbs, small to medium-sized and generally erect; pollen usually spiny, rarely smooth (inAjaniopsis, Stilpnolepis, Filifolium, and Sphaeromeria) ... 141Capitula in elongated and paniculate, rarely racemiform orspiciform or subglobose inflorescences, often small and numer-ous and sometimes pendent; pollen smooth168
141 Central floret corolla 4-lobed (rarely 3-lobed in Cotula) 142
Central floret corolla 5 -lobed 150
142 Cypselas dorsiventrally flattened with 2 lateral more or lessdistinct ribs or wings143
Cypselas not or only slightly dorsiventrally flattened without orwith 3-5 ribs and no wings ... 146
143 Shrublets or half-shrubs with corymbose or occasionally solitarycapitula106. Schistostephium
Annual or perennial herbs with solitary capitula, rarely fewtogether144
144 Capitula sessile; outer female florets without corolla and withstyle persistent and spinescent in fruit 105. Soliva Capitula more or less pedunculate; outer female florets with corolla; style not persistent145
145 Outer female floret corolla inflated with a hollow space betweenthe outer and inner layer; central florets female-sterile104. Leptinella
Outer female floret corolla not inflated; central florets generallyfertile103. Cotula
146 Perennial (rarely facultative annual) prostrate herbs, regularlyrooting at the nodes; central florets female-sterile
104. Leptinella
Annual herbs, not regularly rooting at the nodes; central florets
fertile 147
47 Disc corolla tube very much swollen and brittle
88. Oncosiphon
Disc corolla tube not or only slightly swollen148
148 Delicate, somewhat succulent herb; leaves with rounded lobes;capitula small, 5 mm or less in diam.58. Nananthea
Habit and leaves various; capitula generally more than 5 mm indiam.149
149 Cypsela wall either white and spongy with 1 adaxial and 2 lateralweak ribs, abaxially thin, or cypselas almost terete and thin-walled all around (additional outer conspicuously rugose cypse-las may be present)96. Foveolina
Cypsela wall not white and spongy, with 5 adaxial-lateral
ribs92. Matricaria
150 Annual herbs 151
Perennial herbs or often half-shrubs, shrublets or shrubs 156
limb inflated, crateriform; cypselas obovoid-lanceolate, densely glandular 36. Stilpnolepis Involucral bracts obovate-oblong, only marginally scarious; corolla limb more or less distinct but not inflated and crateriform; cypselas various but not obovoid-oblanceolate and densely glandular

152
152 Corolla lobes densely pilose; capitula few together in dense corymbs; cypselas obovoid with rows of myxogenic cells
37. Ajaniopsis

Corolla lobes glabrous, sometimes glandular; capitula often solitary or laxly corymbose; cypselas various

153
153 Cypselas distinctly rugose to tuberculate, more or less 5-angled
87.Rennera

Cypselas smooth or ribbed and not rugose to tuberculate (outer conspicuously rugose cypselas in addition to the smooth central cypselas sometimes present in Foveolina) 154

154 Cypselas somewhat dorsiventrally flattened and with 2 lateral weak ribs; corolla lobes with central resin sacs
99. Aaronsohnia

Cypselas smooth and obovoid to terete, or with 3-5 adaxiallateral, more or less distinct ribs; corolla lobes without or sometimes with central resin sacs (in Matricaria) 155

155 Cypsela wall either white and spongy with 1 adaxial and 2 lateral weak ribs, abaxially thin, or almost terete and thin-walled all around (additional outer conspicuously rugose cypselas may be present) 96. Foveolina Cypsela wall not white and spongy, with 5 adaxial-lateral ribs ... 92. Matricaria

156 Cypselas dorsiventrally flattened, with or without lateral wings 107. Hippia Cypselas not dorsiventrally flattened, unwinged 157

157 Cypselas with dark vallecular secretory canals between the pale ribs and with myxogenic cells on the ribs .. 71. Leucanthemum Cypselas with or without ribs but vallecular secretory canals absent

158
158 Capitula disciform; outer female florets present 159 Capitula discoid; all florets hermaphrodite 162

159 Central floret corollas soon compressed together in a resinous mass; cypselas obliquely obovoid; a perennial herb with basal fibrous leaf sheaths and filiform leaf lobes 38. Filifolium Central floret corollas not compressed in a resinous mass; cypselas straight and obovoid to obovate-oblong; habit and leaves various 160

160 Pollen smooth; small perennial herbs or half-shrubs 39. Sphaeromeria Pollen spiny (sometimes with short spines only); habit various

161
161 Style-branches brownish; corolla lobes erect . 35. Phaeostigma Style-branches yellowish; corolla lobes spreading .. 34. Ajania

162 Cypselas slender and somewhat arcuate, tuberculate with numerous obtuse excrescences; a basally villous and woody perennial with much pinnatisect leaves and densely corymbose capitula
27. Pseudohandelia Cypselas obovoid-oblong, straight or somewhat oblique, smooth or ribbed but not tuberculate; habit, leaves and capitula various

163
163 Cypsela ribs acute, with secretory cavities (best seen in crosssection); corolla gradually expanded and funnel-shaped .
7. Athanasia

Cypsela ribs faint or rounded, without secretory cavities; corolla more or less distinctly divided into tube and limb

164
164 Cypselas 10-18-ribbed
3. Phymaspermum

Cypselas with fewer than 10 ribs
165
165 Anthers tailed; perennial herbs with much pinnatisect, basally more or less rosulate leaves \qquad 20. Hippolytia Anthers not tailed; habit various; leaves entire or rather fewlobed 166
166 Perennial herbs with laxly corymbose capitula . 36. Stilpnolepis
167 Leaves with linear lobes 30. Brachanthemum Leaves ericoid with short lobes 85. Pentzia

168 Capitula disciform; outer female florets present; involucral bracts in 2-5 rows

169
Capitula discoid; all florets hermaphrodite; involucral bracts in 4-7 rows, unequal, the outer short and rounded, the inner gradually longer and linear
41. Seriphidium

169 Corolla lobes pilose ... 170
Corolla lobes glabrous, sometimes glandular 173
170 Cypselas densely pilose .. 171
Cypselas glabrous ... 172
171 Outer female florets without corolla and with dilated, Ianceolate, flat style-branches; a virgate shrub 46. Mausolea Outer female florets with a tubular corolla and linear stylebranches; a woody shrublet with older branches transformed into spines
47. Picrothamnus

172 Leaves pinnatisect; capitula densely congested in glomerules arranged in spikes, or solitary in interrupted partly congested spikes; indumentum of simple of bifid hairs
45. Turaniphytum Leaves entire or few-lobed; capitula few in an elongated panicle, at the summit fasciculate; indumentum of stellate hairs
40. Kaschgaria

173 Suffruticose perennial with entire or 3-5-lobed leaves; capitula $30-50$-flowered in a pyramidal to elongated panicle (Sphaeromeria ruthiae)
39. Sphaeromeria Habit, leaves, and capitula various, usually with fewer than 30 florets 174

174 Central florets of two kinds; outer perfect, inner completely sterile with reduced ovaries; panicle spiciform; leaves pectinatepinnatisect with filiform, apically somewhat swollen and mucronulate lobes 44. Neopallasia Central florets all perfect or all female-sterile with reduced ovaries; inflorescence and leaves various
43. Artemisia

ANTHEMIDEAE Cass.

J. Phys. Chim. Hist nat. 88: 192 (1819). Type species: Anthemis maritima L .

Aromatic annual or perennial herbs, subshrubs or shrubs, rarely spinescent. Leaves alternate or rarely opposite or fasciculate or rosulate, generally variously dissected, pinnatisect, pinnatifid, lobed or serrate-dentate or rarely entire. Capitula solitary or corymbose or paniculate, rarely aggregated, often pedunculate, sometimes sessile, variable in size, radiate or disciform and heterogamous or homogamous and discoid. Involucral bracts in three or more rows, rarely in two rows, imbricate, almost always with scarious margins and apex. Receptacle paleate or epaleate, rarely pilose or hirsute. Ray florets (in radiate capitula) female, fertile or sterile, or neuter; limb white, yellow or rarely blue-violet, pink or reddish. Outer female florets (in disciform capitula) in one or
more rows, tubular, rarely without corollas. Central disc florets 5 - or 4 -lobed, rarely 3-lobed, yellow or rarely whitish or red, rarely somewhat zygomorphic, perfect or functionally male. Anthers generally obtuse at base, rarely shortly tailed; filaments basifixed. Style-branches (in central florets) almost always truncate and penicillate, with stigmatic areas in two marginal stripes, but sometimes undivided in functionally staminate florets. Cypselas variable, homo- or heteromorphic, generally terete to weakly angled or ribbed or flattened, sometimes winged, thin- or thick-walled, without a carbonized layer, often with secretory canals and myxogenic cells. Pappus generally of rather few scarious scales, a corona or an auricle, rarely of many flat bristle-like scales, often absent. Embryo sac monosporic or sometimes tetrasporic, rarely bisporic. Chromosome number generally $x=9$, sometimes $x=10$, rarely $x=6,7,8,11$ or 18 . Irregular monoterpenes present in high concentrations.
Distribution (Table 3). Worldwide but with main concentrations in central Asia, the Mediterranean region and South Africa. - 12 subtribes, 108 genera, 1741 spp.

The interrelationships of the 12 proposed subtribes are uncertain, but one possible hypothesis is presented in the cladogram (Fig. 1). It should be noted that a number of equally parsimonious solutions are possible, and that the strict consensus tree of these solutions is totally collapsed. The chosen cladogram is offered simply as a suggestion for further analysis and test. The characters used to identify the various clades, indicated in the cladogram, are listed with comments below.

Fig. 1 Cladogram (of five possible) of the 12 subtribes; produced by the mhennig* option in Hennig86. Cladogram length $=39$, consistency index $=84$, retention index $=53$.

Clades and characters - Fig. 1, Tables $2 \& 4$.

Clade AO

15 Leaves variously deeply lobed or divided. Dissected leaves are characteristic of most Anthemideae as well as of its postulated relatives in the Heliantheae. Some of the Anthemideae genera and species have entire leaves, but these taxa are clearly related to other taxa with dissected leaves.

43 Involucral bracts with scarious margins. This is characteristic of almost all Anthemideae as well as of its postulated relatives in Heliantheae, but also in some austral and grangeoid Astereae. At the generic level. Myxopappus with subulate involucral bracts represents a reversal.
Clade A1 - tribe Anthemideae

Table 4 Data matrix for the Anthemideae. $1=$ presence, $0=$ absence, ? = missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

| 111 | 1 | 1 | 1 | 1 | 11 | 1 | 111 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 145057459746161319758857422746 532718565944192865132124251101706

1. Ursiniinae
2. Cancriniinae
3. Tanacetinae
4. Gonosperminae
5. Handeliinae
6. Artemisiinae
7. Achilleinae
8. Anthemidinae
a 1 aa 1 ap 0000 p 10000 pp 0 pap0a 1 p 00000 p
9. Chrysantheminae a 1 aa $1 ? 0000001000 \mathrm{p} 0001 \mathrm{a} 001 \mathrm{pa} 11 \mathrm{p} 000$

10 .Leucantheminae a1a11?p0000p 10000 pa 0 pap 000 pp 0 a 00 p
11. Thaminophyllinae a 1 a 11? pp 000010000000 pp 000 ? 000 a 100 12. Matricariinae aaa11ap0p0001000pp00pap00ppp00paa

52 Ray floret limb white. Rays in the Anthemideae are mostly white and sometimes yellow (rarely pink, reddish or blueviolet). In the Heliantheae relatives rays are yellow.

107 Cypselas terete to weakly angled, or flattened. The fruits are very variable in the Anthemideae, but the sharply angled type, present in all of its postulated immediate relatives in the Heliantheae, is hardly ever present.
151 Cypsela wall without carbonized layer. A carbonized layer in the fruit wall is characteristic of many Heliantheae and of all Eupatorieae, including the immediate relatives of the Anthemideae, but it is totally absent in this tribe. The absence of this feature is thus interpreted as a derived condition for the tribe.

178 'Irregular' monoterpenes in high concentrations present (Greger, 1977).

Clade A2

161 Pappus of short (not large and obovate or bristle-like) scales, an auricle, a corona, or absent. In subtribe Cancriniinae, which is not a member of this clade, the pappus consists of many subulate, bristle-like scales and it looks very anomalous within the tribe. The same pappus type is found in the immediate relatives within Heliantheae. Ursinia in subtribe Ursiniinae, also not a member of this clade, has a pappus of large and obovate scales, similar to some of the wider pappus scales in Cancriniinae and Heliantheae. Judging from other characters, Ursinia is related to a number of South African genera, all united in subtribe Ursiniinae. In these genera the pappus is absent and we consider it secondarily lost. However, in one genus, Hymenolepis, a pappus of small scales has evolved. In all other Anthemideae, comprising clade A2 and excluding Cancriniinae and Ursiniinae, the pappus, if not secondarily lost, consists of scales, an auricle or a corona.

Clade A3

51 Floral parts with resin canals. Resin canals or sacs are frequently present in style-branches, corolla lobes and sometimes also anther tips in a majority of the Anthemideae. They seem to occur mainly in the subtribes of this clade, though present also in some genera of other subtribes.

Clade A4

152 Cypsela wall several cell layers thick, partially or completely sclerified.

Clade A5

21 Leaves serrate-dentate. In the two subtribes of this clade non-dissected leaves dominate, though there are exceptions in several genera.

1. URSINIINAE Bremer \& Humphries, subtrib. nov.

Type species: Ursinia paradoxa Gaertner (U. chrysanthemoides (Less.) Harvey).
Herbae annuae vel perennes vel frutices. Corollae flosculorum radii cellulis epidermalibus tabularibus. Antherae cellulis endothecii polaratis. Pappus squamiformis magnus aut parvus vel nullus. Furanosesquiterpena adsunt.

Annual or perennial herbs or shrubs. Leaves alternate or sometimes opposite, variable in shape. Capitula solitary or laxly to densely corymbose, pedunculate or rarely sessile along the stems, radiate or discoid. Receptacle paleate or epaleate. Ray floret limb yellow, white or rarely red; epidermis cells tabular. Disc corolla 5-lobed. Anthers with endothecial tissue polarized. Cypselas 5- to many-ribbed, glabrous or pubescent, papillose to copiously villous, sometimes with myxogenic cells. Pappus of large or small scales, or often absent. Furanosesquiterpenes present.

Distribution (Table 5). Southern Africa, one Ursinia species in Ethiopia and one Lasiospermum species in Egypt (Sinai), some Ursinia species introduced in Australia and New Zealand. - 8 genera, 114 spp.

Table 5 General distribution of Ursiniinae and genera. $\mathrm{x}=$ indigenous, $\mathrm{o}=$ introduced.

	S. Eur.	N. Afr.	S. Afr.	Austr. N. Zeal.
Ursiniinae				
Ursinia	0	x	x	o
Lasiospermum		x	x	o
Phymaspermum		x	x	
Eumorphia		x		
Gymnopentzia			x	
Hymenolepis		x		
Athanasia		x		
Asaemia		x		

This subtribe was first identified as a group by Bohlmann and collaborators (Greger, 1977), who discovered that a number of South African Anthemideae genera contained furanosesquiterpenes rather than the common polyacetylenes. Subsequently, the classification of the group has been revised by Källersjö $(1986,1991)$, who added a number of micromorphological characters (see cladogram in Fig. 2). Källersjö circumscribed it more precisely, by moving a number of Athanasia species (to Inulanthera in the Gonosperminae) and by including some chemically unknown genera, now placed in Phymaspermum and Hymenolepis, which have now been investigated chemically. The tribal position of Ursinia within Anthemideae, discussed below, has gained further support.

There is one alternative equally parsimonious cladogram to that shown here. In the alternative cladogram Phymaspermum and Gymnopentzia are sister groups based on a shared loss of receptacular paleae (character 45), whereas in the presented cladogram Gymnopentzia and Eumorphia are sister groups based on their opposite leaves (character 14).
Clades and characters - Fig. 2, Tables 2, 6.

Fig. 2 Cladogram (of two possible) of the Ursiniinae produced by the ie option in Hennig86. Cladogram length $=39$, consistency index $=82$, retention index $=79$.

Table 6 Data matrix for the Ursiniinae. $1=$ presence, $0=$ absence, ? $=$ missing data or not applicable, $p=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

		111	1111111	111	1

Clade Ur1 - subtribe Ursiniinae
45 Receptacle paleate. The distribution of this character is difficult to interpret. Receptacular paleae are absent in Phymaspermum, Gymnopentzia, Asaemia, a few species of Athanasia, and one species of Hymenolepis. This is most parsimoniously interpreted as secondary losses within the subtribe.
56 Ray floret limb epidermis cells tabular (senecioid or mutisioid type) (Baagøe, 1977).
95 Anthers with endothecial tissue partly or wholly polarized.

179 Furanosesquiterpenes present.

Ursinia

159 Cypsela wall with a continuous ring of fibre-like cells.
164 Pappus of 5 convolute-contorted scales.

Clade Ur2

161 Pappus of short (not large and obovate or bristle-like) scales, an auricle, a corona, or absent.
172 Pappus absent in ray and disc cypselas. Hymenolepis has a pappus of small scales, most parsimoniously interpreted as secondarily evolved within this clade.

Lasiospermum

133 Cypselas with costal resin canals or sacs. These structures are similar to those occurring in the subtribe Matricariinae, for example, but different from those in Hymenolepis, Athanasia, and Asaemia (character 132).
150 Cypselas copiously villous, seemingly covered in 'cotton wool'.

Clade Ur3
2 Plants shrubby.
28 Leaves with secretory cavities.
29 Capitula densely corymbose. Asaemia and some species of Athanasia and Phymaspermum have solitary capitula.

Clade Ur4

124 Cypselas with 10 (8-12) multicellular epicarpic ribs. Occasionally there are up to 18 ribs.
145 Cypselas papillose.

Phymaspermum

45 reversed. See clade Ur1.
144 Cypselas with scattered, ovoid, myxogenic trichomes. In a few species the trichomes are not myxogenic, though similar in structure.

Clade Ur5

14 Leaves opposite.

Eumorphia

There is no autapomorphy for Eumorphia. The matter is further discussed under the genus.

Gymnopentzia

35 Capitula discoid.

45 reversed. See clade Ur1.
146 Cypselas long-papillose, seemingly pubescent.

Clade Ur6

12 Plants with stellate hairs.
35 Capitula discoid.
51 Floral parts with resin canals.
69 Corolla gradually expanded, rather thin and funnel-shaped.
74 Corollas with continuous veins extending into the lobes.
132 Cypsela ribs with ellipsoid secretory cavities forming longitudinal ducts.

Hymenolepis

172 reversed. See clade Ur2.

Clade Ur7

94 Anthers with an apical resin sac. This character occurs in most but not all species of Athanasia.

152 Cypsela wall several cell layers thick, partially or completely sclerified.
160 Cypsela wall with a continuous ring of sclerified isodiametric cells.

Athanasia

89 Corolla tube with long-stalked glands; stalk cells elongated. Some species of Athanasia have glabrous corolla tubes, apparently secondarily.

126 Cypsela ribs protruding, narrow and somewhat wing-like.
Asaemia

14 Leaves opposite.

15 reversed. Leaves not variously deeply lobed or divided, but entire.

23 Leaves entire, ericoid.
29 reversed. See clade Ur3.
34 Capitula sessile along the stems.
45 reversed. See clade Ur1.
114 Cypselas dorsiventrally flattened.

1. URSINIA Gaertner, Fruct. sem. pl. 2: 462 (1791).

Type species: U. paradoxa Gaertner (U. chrysanthemoides (Less.) Harvey). - Sphenogyne R. Br. - Ursiniopsis E. Phillips.
Annual or perennial herbs or shrublets. Leaves alternate, entire or generally variously lobed. Capitula solitary or laxly corymbose, pedunculate, radiate or occasionally discoid. Receptacle paleate; paleae scarious, often enveloping florets, sometimes narrow with an apical limb. Ray florets generally neuter or occasionally female, sterile or fertile; limb yellow, white, or rarely red, dorsally often reddish; epidermis cells tabular. Disc corolla shallowly 5 -lobed. Anthers with a widely ovate apical appendage; endothecial tissue polarized. Cypselas slender or obovoid, straight or curved, 5 -ribbed, with a basal tuft of long hairs or glabrous. Pappus of 5 (rarely 8-10) large, convolute-contorted, whitish scales, or of 5 outer such scales and 5 inner subulate, whitish scales, or occasionally absent. Furanosesquiterpenes present.

Distribution. S. Africa mainly in the SW Cape, also in Namibia, Botswana, and Ethiopia. - 38 spp.

Ursinia was revised by Prassler (1967). Species without a basal tuft of cypsela hairs earlier constituted Ursinia s. s. (excluding Sphenogyne; the two genera differed also in other characters). Species with glabrous cypselas are considered derived by Prassler so we assume that presence of cypsela hairs is a diagnostic character for the whole genus, though secondarily lost in some species. Another former genus, Ursiniopsis, was distinguished simply by female rather than neutral rays. It was reduced to synonomy by Prassler. Earlier authors, e.g. Bentham (1873a), placed Ursinia in the tribe

Arctoteae sensu Norlindh (1977) mainly because of its well developed pappus scales. Cassini (1816) followed by Beauverd (1915) and Prassler considered it a member of Anthemideae. Robinson \& Brettell (1973) argue that inclusion in the Anthemideae of the anomalous genus Ursinia with its conspicuous pappus scales, widely ovate apical anther appendages, and different pollen (exine without columnar structure) would destroy a workable tribal concept. Hence they proposed a monotypic new tribe, Ursinieae. The large pappus scales and the shape of the apical anther appendage may be plesiomorphies within Anthemideae, since similar structures occur in the outgroup. The pollen was investigated by Stix (1960) and she concluded that Ursinia belongs in Anthemideae. The presence of unique furanosesquiterpenes in Ursinia and a number of other South African Anthemideae corroborates its tribal position.
Although mainly South African, there is one species (U. nana) also known from Ethiopia and U. anthemoides is introduced into western Australia. The following list of species is taken mainly from Prassler's revision.
U. abrotanifolia (R. Br.) Sprengel
U. anethoides (DC.) N. E. Br.
U. anthemoides (L.) Poiret
U. brachyloba (Kunze) Bremer \& Humphries, comb. nov. Basionym: Sphenogyne brachyloba Kunze in Linnaea 20: 21 (1847).
U. cakilefolia DC.
U. caledonica (E. Phillips) Prassler
U. calenduliflora (DC.) N. E. Br.
U. chrysanthemoides (Less.) Harvey (U. paradoxa Gaertner)
U. coronopifolia (Less.) N. E. Br.
U. dentata (L.) Poiret
U. discolor (DC.) N. E. Br.
U. dregeana (DC.) N. E. Br.
U. eckloniana (Sonder) N. E. Br.
U. filipes (E. Meyer ex DC.) N. E. Br.
U. frutescens Dinter
U. heterodonta (DC.) N. E. Br.
U. hispida (DC.) N. E. Br.
U. macropoda (DC.) N. E. Br.
U. merxmuelleri Prassler
U. montana DC.
U. nana DC.
U. nudicaulis (Thunb.) N. E. Br.
U. oreogena Schltr ex Prassler
U. paleacea (L.) Moench (U. crithmoides (P. Bergius) Poiret)
U. pilifera (P. Bergius) Poiret
U. pinnata (Thunb.) Prassler
U. punctata (Thunb.) N. E. Br.
U. pygmaea DC.
U. quinquepartita (DC.) N. E. Br.
U. rigidula (DC.) N. E. Br.
U. saxatilis N. E. Br.
U. scariosa (Aiton) Poiret
U. sericea (Thunb.) N. E. Br.
U. serrata (L. f.) Poiret
U. speciosa DC.
U. subflosculosa (DC.) Prassler
U. tenuifolia (L.) Poiret
U. trifida (Thunb.) N. E. Br.
2. LASIOSPERMUM Lagasca, Gen. sp. pl.: 31
(1816). Type species: L. pedunculare Lagasca (L. erectum (Lam.) Druce).

Annual or perennial herbs. Leaves alternate, variously pinnatisect. Capitula solitary, pedunculate, radiate or discoid. Receptacle flat or convex, paleate; paleae thin and scarious with a conspicuous resin canal. Ray florets female, fertile; limb very short to long, white or reddish; epidermis cells tabular. Disc corolla 5-lobed; lobes sometimes reddish. Anthers with endothecial tissue polarized. Cypselas copiously villous, with resin canals. Pappus absent. Furanosesquiterpenes present.

Distribution. S. Africa in the Cape, Namibia, and Egypt in Sinai. - 4 spp.

Lasiospermum is a well defined genus with copiously villous cypselas and the development of the cypsela wool deserves detailed investigation. One annual species (L. brachyglossum) occurs also in Sinai. Similar disjunctions are known also from other groups. The first three species in the list are taken from Flora capensis (Harvey, 1865).
L. bipinnatum (Thunb.) Druce (L. radiatum Trevir.)
L. brachyglossum DC.
L. erectum (Lam.) Druce (L. pedunculare Lagasca)
L. poterioides Hutch. - Note: Description in Hutchinson, 1946.
3. PHYMASPERMUM Less., Syn. gen. compos. : 253 (1832). Type species: P. junceum Less. Adenachaena DC. - Brachymeris DC. - Iocaste E. Meyer ex Harvey

Shrubs or half-shrubs. Leaves alternate, entire or lobed, often ericoid with secretory cavities. Capitula solitary or corymbose, generally pedunculate, rarely sessile along the stems, radiate or discoid. Receptacle flat to conical, epaleate. Ray florets female, fertile; limb white; epidermis cells tabular. Disc corolla 5-lobed, rarely pubescent with long hairs, with a narrow tube and a distinct limb. Cypselas 10-18ribbed, generally minutely papillose especially on the ribs and generally with scattered ovoid myxogenic trichomes, with a more or less distinct apical rim. Pappus absent. Furanosesquiterpenes present.

Distribution. S. Africa in the Cape, Orange Free State, and Transvaal, Swaziland, Zimbabwe and Namibia. - 18 spp.

Phymaspermum was formerly diagnosed as South African shrubs with epaleate and radiate capitula and papillose and glandular cypselas. Only the cypsela character represents a useful synapomorphy for the genus. Phymaspermum cypselas have a peculiar and unique type of myxogenic trichome, which are ovoid or almost subglobose and scattered over the cypsela surface. Brachymeris was first described as a monotypic genus and the type species, B. scoparia, is a shrub with much reduced leaves, small capitula sessile along the stems, and a pubescent corolla. Hutchinson (1917) described four new species and transferred one Pentzia species to Brachymeris, mainly because they all, like B. scoparia, possessed cypselas without a pappus. Hutchinson's species differ from B. scoparia in several characters; they have rather closely set long leaves, capitula in corymbs, and glandular but not pubescent corollas. Källersjö (1986), who investigated these
genera, concluded that B. scoparia as well as Hutchinson's species could be transferred to Phymaspermum because of their similar cypsela morphology. All Brachymeris species have the Phymaspermum type of ovoid cypsela trichomes, although they are not always myxogenic. Källersjö also transferred a group of Athanasia species with the same cypsela morphology to Phymaspermum. These Athanasia species are also in habit similar to P. aciculare for example. The species of Phymaspermum s. s. (excluding the former Athanasia and Brachymeris species but including Adenachaena and Iocaste) are taken from Flora capensis (Harvey, 1865) with three species described later added. The former Athanasia and Brachymeris species are best identified using the treatments by Hilliard (1977) and Hutchinson (1917), respectively.
P. acerosum (DC.) Källersjö (Athanasia acerosa (DC.) D. Dietr.
P. aciculare (E. Meyer ex Harvey) Benth. ex B. D. Jackson (Iocaste acicularis E. Meyer ex Harvey)
P. appressum Bolus - Note: Description in Bolus, 1905.
P. argenteum Brusse - Note: Description in Brusse, $1989 b$.
P. athanasioides (S. Moore) Källersjö (Brachymeris athanasioides (S. Moore) Hutch.)
P. bolusii (Hutch.) Källersjö (Brachymeris bolusii Hutch.)
${ }^{*}$ P. equisetoides Thell. - Note: Description in Thellung, 1923.
P. erubescens (Hutch.) Källersjö (Brachymeris erubescens Hutch.)
P. junceum Less.
P. leptophyllum (DC.) Benth. ex B. D. Jackson (Adenachaena leptophylla DC.)
P. montanum (Hutch.) Källersjö (Brachymeris montana Hutch.)
P. parvifolium (DC.) Benth. ex B. D. Jackson (Adenachaena parvifolia DC.)
P. peglerae (Hutch.) Källersjö (Brachymeris peglerae Hutch.)
P. pinnatifidum (Oliver) Källersjö (Athanasia pinnatifida (Oliver) Hilliard)
P. schroteri Compton - Note: Description in Compton, 1931.
P. scoparium (DC.) Källersjö (Brachymeris scoparia DC.)
P. villosum (Hilliard) Källersjö (Athanasia villosa Hilliard)
P. woodii (Thell.) Källersjö - Athanasia woodii (Thell.) Hilliard)

4. EUMORPHIA DC., Prodr. 6: 2 (1838). Type species: E. dregeana DC.

Shrubs. Leaves opposite, rarely alternate, entire or lobed, more or less ericoid, with secretory cavities. Capitula generally solitary or corymbose, generally pedunculate, radiate. Receptacle flat or slightly convex, rarely conical, generally paleate, sometimes epaleate. Ray florets female, fertile; limb white; epidermis cells tabular. Disc corolla 5-lobed, with a narrow tube and a distinct limb. Anthers with endothecial tissue polarized. Cypselas $10-12$-ribbed, rarely up to 18-ribbed, minutely papillose especially on the ribs, with an apical rim. Pappus absent. Furanosesquiterpenes present.

Distribution. S. Africa in the central Cape, Natal and Transvaal, and in Lesotho and Swaziland. - 6 spp.
Traditionally Eumorphia comprises South African Anthemideae with radiate capitula (a plesiomorphy), a paleate receptacle and cypselas without a pappus, characters common to several other genera. E. prostrata has a partly
epaleate receptacle. The apical cypsela rim present in Eumorphia occurs also in other genera, e.g. Phymaspermum. Eumorphia has opposite leaves, which also characterize Gymnopentzia. One species, E. davyi, is aberrant in having alternate, closely set leaves and a conical receptacle. It is provisionally retained in Eumorphia by Källersjö (1985). The circumscription of this genus obviously needs further consideration.
E. corymbosa E. Phillips - Note: Description in Phillips, 1950.
E. davyi Bolus - Note: Description in Bolus, 1906.
E. dregeana DC. - Note: Description in Harvey, 1865.
E. prostrata Bolus - Note: Description in Hilliard, 1977.
E. sericea J. M. Wood \& M. Evans - Note: Description in Hilliard, 1977.
E. swaziensis Compton - Note: Description in Compton, 1976.
5. GYMNOPENTZIA Benth. in Benth. \& Hook. f., Gen. pl. 2(1): 537 (1873). Type species: G. bifurcata Benth.
A shrub. Leaves opposite, pinnatifid, somewhat ericoid, with secretory cavities. Capitula corymbose, discoid. Receptacle flat or slightly convex, epaleate. Corolla 5-lobed, with a narrow tube and a distinct limb. Anthers with endothecial tissue polarized. Cypselas 10 -ribbed, densely long-papillose and thus seemingly pubescent. Pappus absent. Furanosesquiterpenes present.
Distribution. S. Africa in the E. Cape, Natal and Transvaal, and in Lesotho. - Monotypic.
In related genera, i. e. Eumorphia and Phymaspermum, the cypselas are minutely papillose, the epidermis cells being more or less projected. This is especially pronounced in Gymnopentzia, the papillae often being much longer than wide and similar to unicellular hairs. The cypselas are thus often described as pubescent. The opposite leaves is another distinguishing feature from Phymaspermum and possibly synapomorphic with Eumorphia.
6. HYMENOLEPIS Cass. in Bull. Sci. Soc. philom. Paris 1817: 138 (1817). Type species: H. parviflora (L.) DC. - Phaeocephalus S. Moore.

Pubescent shrubs; hairs stellate. Leaves alternate, lobed, serrate-dentate or entire, with secretory cavities. Capitula slender, few-flowered, corymbose, sometimes rather densely aggregated, discoid. Receptacle flat, generally paleate, rarely epaleate. Corolla gradually expanded and funnel-shaped, 5-lobed, with short-stalked glands and with continuous veins also in the lobes. Anthers with endothecial tissue polarized. Cypselas 5-10-ribbed, with ellipsoid secretory cavities forming longitudinal ducts. Pappus a corona of fimbriate scales. Furanosesquiterpenes present.
Distribution. S. Africa in the Cape. -7 spp.
Harvey's (1865) treatment of Hymenolepis as a separate genus rather than as a section of Athanasia was recently revived by Källersjö (1986), since Athanasia including Hymenolepis is paraphyletic. Athanasia s. s. is more closely related to Asaemia than to Hymenolepis, as shown in the cladogram (Fig. 2). Hymenolepis differs by its slender, few-flowered
capitula and scaly pappus. The monotypic Phaeocephalus was reduced to a synonym of this genus by Källersjö. A key to the species was provided by Bremer \& Källersjö (1986).
H. cynopus Bremer \& Källersjö
H. dentata (DC.) Källersjö (Athanasia schizolepis Harvey)
H. gnidioides (S. Moore) Källersjö (Phaeocephalus gnidioides S. Moore)
H. incisa DC.
H. indivisa (Harvey) Källersjö
H. parviflora (L.) DC.
H. speciosa (Hutch.) Källersjö
7. ATHANASIA L., Sp. pl. 2nd ed.: 1180 (1763). Type species: A. crithmifolia (L.) L. (Bremer \& Wijnands, 1982). - Stilpnophyton Less.
Glabrous or pubescent shrubs; hairs stellate. Leaves alternate, entire, dentate, or lobed, generally ericoid, with secretory cavities. Capitula generally corymbose, more rarely solitary, discoid. Receptacle flat, generally paleate, rarely epaleate. Corolla gradually expanded and funnel-shaped, 5-lobed, glabrous or with long-stalked glands, with continuous veins also in the lobes. Anthers often with an apical resin sac; endothecial tissue polarized. Cypselas 5-12-ribbed generally with protruding and narrow ribs, glabrous or occasionally glandular, with ellipsoid secretory cavities forming longitudinal ducts. Pappus absent or often a pseudopappus of stalked glands. Furanosesquiterpenes present.

Distribution. S. Africa, mainly in the SW Cape, one species in Natal (A. grandiceps). -39 spp .
Athanasia traditionally embraced all South African, discoid Anthemideae with a paleate receptacle. Epaleate species were placed in other genera, e. g. Pentzia and Stilpnophyton. Athanasia and Stilpnophyton (as well as Asaemia) have similar cypsela wall anatomy, with a continuous ring of sclerified isodiametric cells. Stilpnophyton was reduced to a synonym by Källersjö (1986).

Several former species of Athanasia have now been transferred by Källersjö to the genera Hymenolepis, Phymaspermum, and Inulanthera. The remaining part, Athanasia s. s. is a homogeneous and monophyletic group. Characteristically, the cypsela ribs are narrow and somewhat wing-like, and the cypselas are often furnished with a peculiar 'pseudopappus' of long-stalked glands. In some species such glands are also present on the corolla tube, and in others they are totally absent, probably secondarily. In her most recent treatment of Athanasia (Källersjö, 1991) the distinctive characters of Asaemia are considered to be autapomorphic and A. minuta is considered to be very similar to Athanasia humilis Källersjö. The list of species is based on Källersjö (1986, 1991).
A. adenantha (Harvey) Källersjö
A. alba Källersjö
A. bremeri Källersjö
A. calophylla Källersjö
A. capitata (L.) L.
A. cochlearifolia Källersjö
A. crenata (L.) L.
A. crithmifolia (L.) L.
A. cuneifolia Lam.
A. dentata (L.) L.
A. elsiae Källersjö
A. filiformis L. f.
A. flexuosa Thunb.
A. grandiceps Hilliard \& Burtt
A. hirsuta Thunb.
A. humilis Källersjö
A. imbricata Harvey
A. inopinata (Hutch.) Källersjö (Stilpnophyton inopinatum Hutch.)
A. juncea (DC.) D. Dietr.
A. leptocephala Källersjö
A. linifolia Burm. (Stilpnophyton linifolium (L. f.) Less.,

Stilpnophyton longifolium (Thunb.) Less.)
A. microcephala DC.
A. microphylla DC.
A. minuta (L. f.) Källersjö
A. oocephala (DC.) Källersjö (Stilpnophyton oocephalum DC.)
A. pachycephala DC.
A. pectinata L. f.
A. pinnata L. f.
A. pubescens (L.) L.
A. quinquedentata Thunb.
A. rugulosa E . Meyer ex DC.
A. scabra Thunb.
A. sertulifera DC.
A. spathulata (DC.) D. Dietr.
A. tomentosa Thunb.
A. trifurcata (L.) L.
A. vestita (Thunb.) Druce
A. virgata Jacq.
A. viridis Källersjö
8. ASAEMIA (Harvey) Harvey ex Benth. in Benth. \& Hook. f., Gen. pl. 2(1): 433 (1873). Type species: A. axillaris (Thunb.) Harvey ex Hoffmann (A. minuta (L. f.) Bremer).

A glabrous, sometimes spiny shrub. Leaves opposite, sheathing, entire, ericoid, with secretory cavites. Capitula sessile, solitary along the branches and on lateral branchlets, discoid. Receptacle flat, epaleate. Corolla gradually expanded and funnel-shaped, 5 -lobed, glandular, with continuous veins also in the lobes. Anthers with an apical resin sac; endothecial tissue polarized. Cypselas 2-5-angled but generally dorsiventrally flattened with 1 adaxial and 2 lateral ribs, glabrous or basally with a few hairs, with few ellipsoid secretory cavities forming longitudinal ducts, apically with a smooth or denticulate thickened rim. Pappus absent. Furanosesquiterpenes present.

Distribution. S. Africa in the Cape and in Namibia. Monotypic.

Asaemia minuta is habitually very distinct, a shrub with ericoid leaves and small sessile capitula. It is sometimes spinescent (ssp. minuta) and sometimes unarmed (ssp. inermis (E. Phillips) Bremer). Asaemia is related to Athanasia. They have similar cypsela wall anatomy with a continuous ring of sclerified isodiametric cells (Källersjö, 1986). Both Asaemia and most species of Athanasia also have anthers with apical resin sacs. The genus was revised by Bremer (1983) but sunk into Athanasia by Källersjö (1991).

2. CANCRINIINAE Bremer $\&$ Humphries, subtrib. nov.

Type species: Cancrinia chrysocephala Karelin \& Kir.

Plantae perennes, herbaceae vel suffruticosae, compactae, plusminusve scaphoideae. Bracteae involucri plerumque margine atrofuscae. Pappus e squamis vel setis planis pluribus, obovatis vel linearibus, albidis vel brunneis, longitudine quam corolla 2-plo brevioribus vel longioribus formatus.
Compact, more or less scaphoid perennial herbs or halfshrubs. Leaves alternate to rosulate, pinnatifid to pinnatisect. Capitula solitary, pedunculate, radiate or discoid. Involucral bracts generally with dark brown margins. Receptacle epaleate, glabrous or sometimes pilose or hirsute. Ray floret limb white, yellow, pinkish or bluish violet. Disc corolla 5-lobed, sometimes pilose. Cypselas $5-15$-ribbed, glabrous or pilose. Pappus of several, obovate to linear, whitish or brownish scales or flat bristles, at least half as long as the corolla.
DISTRIBUTION (Table 7). Asia, mainly central part. - 6 genera, 26 spp .

Table 7 General distribution of Cancriniinae and genera. $\mathrm{x}=$ indigenous, $\mathrm{o}=$ introduced.

	C.\& E. Asia	SW Asia
Cancriniinae	x	x
Trichanthemis	x	
Ugamia	x	x
Richteria	x	
Allardia	x	
Cancrinia	x	
Cancriniella	x	

This subtribe comprises some of the most plesiomorphic representatives of the tribe Anthemideae. In habit species of Trichanthemis and Richteria, and in pappus structure Ugamia and Allardia, are similar to members of the outgroup in tribe Heliantheae. Most species are restricted to mountain habitats in central Asia. Ugamia, Cancriniella and some Trichanthemis species, are small, compact, much woody, cushionformed half-shrubs. Cancrinia and Allardia are compact perennial herbs. This habit character, together with the dark brown-margined involucral bracts, are both considered synapomorphies for the genera of the subtribe. It is possible that groups of species in Tanacetum, subtribe 'Tanacetinae', also sharing these features, are related to members of Cancriniinae rather than 'Tanacetinae', and should be transferred to Cancriniinae.

The cladogram for the genera is only one of several equally parsimonious ones, and shown only to display one possible hypothesis of generic interrelationships. The strict consensus tree for the alternative cladograms is totally collapsed.

Clades and characters - Fig. 3, Tables 2, 8.
Clade Cal - subtribe Cancriniinae
4 Plants compact and more or less scaphoid. Allardia and Cancrinia are compact, more herbaceous perennials with rather short peduncles, whereas the other genera are much

Fig. 3. Cladogram (of 21 possible) of the Cancriniinae produced by the ie option in Hennig86. Cladogram length $=14$, consistency index $=85$, retention index $=60$.

Table 8 Data matrix for the Cancriniinae. $1=$ presence, $0=$ absence, ? = missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

	111	11	11
	145057	44483375346	15775555566666175
	532718	447983504981	30563567905678511
9. Trichanth	11a11?	1a11a0p00000	????000000000000p
10. Ugamia	a1? a1?	a 11001100000	?????????????????0
11. Richteria	alaal?	a 10000010000	????000000000000p
12. Allardia	a1as1?	a 10000011000	????0000000000000
13. Cancrinia	a1? ${ }^{\text {a }}$?	a 10000110000	????????????????p
14. Cancriniella	a1? ${ }^{\text {a }}$?	a10000100111	?????????????????0

woody basally, generally with long peduncles. Ugamia has short peduncles.

44 Involucral bracts with dark brown margins. This character is absent in some Trichanthemis species.
Clade Ca2
147 Cypselas densely pilose; hairs subulate, with a few basal cells and one long apical cell. Cancrinia and some species of Allardia sometimes have sparsely pilose cypselas.

Trichanthemis

49 Receptacle densely hirsute.
88 Disc corolla tube pilose. Some species of Trichanthemis have glabrous corollas.

Ugamia

33 Capitula on short and nodding peduncles.
35 Capitula discoid. Some species of Trichanthemis, Cancrinia and Cancriniella are also discoid.

Clade Ca3
170 Pappus scales brownish.

Richteria

There is no obvious autapomorphy for this genus, and it appears undefined compared to Allardia and Cancrinia.

Allardia

54 Ray floret limb bluish violet. It is not clear if this character occurs in all Allardia species. Some may have whitish rays.

Cancrinia

35 Capitula discoid.

Cancriniella

35 Capitula discoid.

39 Involucral bracts in 1-2 rows, rather wide. According to

Tzvelev (in Komarov, 1961) this character distinguishes Cancriniella from Cancrinia.

48 Receptacle pilose.
161 Pappus of short (not large and obovate or bristle-like) scales, an auricle, a corona, or absent.

9. TRICHANTHEMIS Regel \& Schmalh. in Trudy

 imp. S.-Peterb. bot. Sada 5: 617 (1877). Type species: T. karataviensis Regel \& Schmalh. Glossanthis Polj.Basally much woody half-shrubs with erect annual stems basally covered in sheathing leaf bases. Leaves alternate and basally rosulate, pinnatisect. Capitula solitary, pedunculate, radiate or discoid. Involucral bracts with or without dark brown margins. Receptacle convex, generally densely hirsute, epaleate. Ray florets female, fertile; limb white, pale pink, or yellow, many-veined; tube generally pilose. Disc corolla 5-lobed, generally pilose; hairs subulate, with a few basal cells and one long apical cell. Cypselas 7-10-ribbed, densely pilose with the same type of hairs as on the florets, sometimes with myxogenic cells. Pappus of 4-12 large, white, linear to oblong scales at least half as long as the corolla.

Distribution. C. Asia. -9 spp .
Trichanthemis has several unusual features such as the hirsute receptacle and the pilose corollas and cypselas. The relationship to Cancrinia and its relatives was noted by Poljakov (1959), who placed several of the present discoid Trichanthemis species in Cancrinia. He also defined Trichanthemis as discoid and removed the radiate species to a new genus Glossanthis. His treatment has not been followed by later authors, e.g. Tzvelev in Flora URSS (Komarov, 1961). Tzvelev noted that the radiate T. aurea and T. radiata are related to the discoid T. paradoxos and T. karataviensis, respectively. He also indicated the possible relationship between the problematic Xylanthemum tianshanicum (Pyrethrum tianshanicum) and Trichanthemis, notably T. butkovii. Another intergeneric relationship in need of investigation is that of Ugamia and Trichanthemis. Some discoid, smallleaved species of Trichanthemis may be more closely related to Ugamia than to other Trichanthemis species. It appears that Trichanthemis may be paraphyletic. Small segregates, possibly Ugamia for example, or even larger ones in Tanacetum may have their sister groups within Trichanthemis.

The list of species is taken from Flora URSS and Flora iranica but with one former synonym re-established as a species (T. simulans; Pavlov, 1966).
T. afghanica Podl.
T. aulieatensis (B. Fedtsch.) H. Kraschen.
*T. aurea H. Kraschen.
*T. butkovii Kovalevsk.
T. karataviensis Regel \& Schmalh.
*T. litwinowii (H. Kraschen) Tzvelev
T. paradoxos (Winkler) Tzvelev
T. radiata H. Kraschen. \& Vved.
*T. simulans (Pavlov) Pavlov

10. UGAMIA Pavlov in Vest. Akad. Nauk Kazakh. SSR 8:25 (1950). Type species: U. trichanthemoides Pavlov (U. angrenica (H. Kraschen.) Tzvelev).

A compact, tomentose, basally much woody half-shrub. Leaves alternate to rosulate, densely set, small, pectinate. Capitula solitary on short, nodding peduncles, discoid. Involucral bracts with dark brown margins. Receptacle almost flat, epaleate. Corolla 5 -lobed. Cypselas 10-15ribbed, densely pilose; hairs subulate, with a few basal cells and one long apical cell. Pappus of $10-15$ white linear scales roughly as long as the corolla.

Distribution. C. Asia. - Monotypic.
Ugamia angrenica is very characteristic with its compact and woody habit, small, pectinate leaves and campanulate capitula on short, nodding peduncles. Though discoid as in Cancrinia and Cancriniella, it is possibly most closely related to part of Trichanthemis, which also has discoid representatives, with densely pilose cypselas.

11. RICHTERIA Karelin \& Kir. in Bull. Soc. Nat.

 Мозсои 15:126 (1842). Type species: R. pyrethroides Karelin \& Kir.Tomentose half-shrubs, basally woody with stems covered in sheathing leaf bases. Leaves alternate and basally rosulate, pinnatisect. Capitula solitary, pedunculate, radiate. Involucral bracts with dark brown margins. Receptacle convex, epaleate. Ray florets female; limb white. Disc corolla 5 -lobed. Cypselas faintly 6 - 10 -ribbed, with sessile glands. Pappus of 6-10 obovate, apically brownish scales at least half as long as the corolla.
Distribution. Iran, Afghanistan, C. Asia, Mongolia, China in Xinjiang and Tibet, Himalaya. - 3 spp.
Richteria is commonly treated as part of Pyrethrum (i.e. Tanacetum s.l.), but since it was originally described as a genus we find it suitable to retain it as such and improve the circumscription of Tanacetum (incl. Pyrethrum) by restricting it to those species with a short coroniform or auriculate pappus.
Richteria approaches Trichanthemis in habit; the somewhat pedunculoid stems are basally covered in more or less sheathing leaf bases and the leaves are mainly basally arranged. This appears to be a plesiomorphic condition within the tribe, since a similar habit is shown by representatives of the outgroup. The pappus scales are apically brownish as in Cancrinia and Allardia, though in the latter genus they are more narrow and numerous. Being white-rayed rather than discoid or blue-rayed, Richteria is plesiomorphic and appears undefined compared to the latter two genera.
Two species of Richteria have been described and one more is added here but there may be more species hidden within Tanacetum.
R. djilgense (Franchet) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum djilgense Franchet in Bull. Mus. Hist. nat. Paris 2:345 (1896) (Pyrethrum djilgense (Franchet) Tzvelev, Tanacetum djilgense (Franchet) Podl.).
R. leontopodium Winkler
R. pyrethroides Karelin \& Kir. (Pyrethrum arassanicum (Winkler) O. \& B. Fedtsch., Pyrethrum neglectum Tzvelev,

Pyrethrum pyrethroides (Karelin \& Kir.) B. Fedtsch. \& H. Kraschen., Pyrethrum transiliense (Herder) Regel \& Schmalh., Tanacetum pyrethroides (Karelin \& Kir.) Schultz-Bip.) - Note: Synonymy after Kovalevskaja (in Vvedensky, 1962: 133) and Podlech (in Podlech et al., 1986).

12. ALLARDIA Decne in Jacquemont, Voy. Inde 4: 87 (1842-7). Type species: A. tomentosa Decne. Waldheimia Karelin \& Kir.

Glabrous to densely tomentose perennial herbs. Leaves alternate to rosulate, densely set, pinnatifid. Capitula solitary, pedunculate, radiate. Involucral bracts with dark brown margins. Receptacle convex, epaleate. Ray florets female, fertile or sterile, or neuter; limb white, pink, or bluish-violet. Disc corolla 5 -lobed, with a yellow or bluish-violet limb. Cypselas faintly 5 - 10 -ribbed, generally with sessile glands, sometimes pilose. Pappus of many bristle-like, subulate, apically brownish scales as long as or longer than the corolla.

Distribution. Afghanistan, C. Asia, Mongolia, China in Sinkiang and Tibet, and Himalaya. - 8 spp.

With its white to pink and blue-violet florets and cypselas with pappus bristles Allardia may seem out of place in the Anthemideae but it is clearly a member of this tribe. The pappus 'bristles' are subulate, much elongated scales, similar to those of Ugamia (in shape and number) and Richteria and Cancrinia (in being apically brownish). Several narrow bristles are probably plesiomorphic, and apically brownish bristles are probable synapomorphies for Allardia and the latter two genera. Tzvelev in Flora URSS (Komarov, 1961) also stated that the genus is related to Richteria.

The publication dates of the various parts of Jacquemont's Voyage dans l'Inde are still in dispute, but it appears that pp. 1-88 of volume 4 were published before 1842 (Stafleu \& Cowan, 1979). Allardia is then prior to Waldheimia, which was published in 1842. Allardia was typified by Tzvelev in Flora URSS (Komarov, 1961). He used Waldheimia for the section name and Waldheimia tomentosa (Allardia tomentosa) as the type species.
*A. huegelii Schultz-Bip. (Waldheimia huegelii (Schultz-Bip.) Tzvelev)
A. Iasiocarpa (G. X. Fu) Bremer \& Humphries, comb. nov. Basionym: Waldheimia lasiocarpa G. X. Fu in Shih \& Fu, Acta phytotax. sin. 17: 113 (1979).
A. nivea Hook. f. \& Thomson ex C. B. Clarke (Waldheimia nivea (C. B. Clarke) Regel)
*A. stoliczkae C. B. Clarke (Waldheimia stoliczkae (C. B. Clarke) Ostenf.)
A. tomentosa Decne (Waldheimia tomentosa (Decne) Regel, Tanacetum tomentosum (Decne) Muradyan)
A. transalaica (Tzvelev) Bremer \& Humphries, comb. nov. Basionym: Waldheimia transalaica Tzvelev in Komarov, Fl. URSS 26: 875 (1961).
A. tridactylites (Karelin \& Kir.) Schultz-Bip. (A. glabra Decne, Tanacetum glabrum (Decne) Muradyan, Waldheimia glabra (Decne) Regel, Waldheimia tridactylites Karelin \& Kir.), Note: A. glabra was reduced by Kovalevskaja (in Vvedensky, 1962:188).
A. vestita Hook. f. \& Thomson ex C. B. Clarke (Waldheimia vestita (C. B. Clarke) Pampan.)
13. CANCRINIA Karelin \& Kir. in Bull. Soc. Nat. Моscou 15: 124 (1842). Type species: C. chrysocephala Karelin \& Kir.

Compact tomentose perennial herbs. Leaves alternate to rosulate, densely set, pinnatifid. Capitula solitary, pedunculate, discoid. Involucral bracts with dark brown margins. Receptacle convex, epaleate. Corolla 5 -lobed with a narrow tube and a distinct limb. Cypselas faintly 7-9-ribbed, glabrous or sparsely pilose. Pappus of 5-12 lanceolate, apically brownish scales as long as or slightly longer than the corolla.

Distribution. C. Asia, Mongolia and China in Xinjiang. - 4 spp.
Cancrinia, originally described as monotypic, was expanded to include some 20 species, mainly from Tanacetum, by Poljakov (1959) and Tzvelev in Flora URSS (Komarov, 1961). Tzvelev divided the genus into four sections. Most of the species do not belong together with the type species, C. chrysocephala and its sister species, C. tianshanica. Tzvelev's sect. Polychrysum and sect. Tanacetopsis were elevated to genera by Kovalevskaja (in Vvedensky, 1962). The monotypic section Matricarioides (C. discoidea) is transferred to Matricaria. Cancrinia and Allardia are possibly more closely related than indicated by the cladogram. They are similar in habit and cypsela morphology, though Allardia has more and narrower pappus scales.
C. chrysocephala Karelin \& Kir.
*C. krasnoborovii V. Khan.
C. pamiralaica (Kovalevsk.) Kovalevsk.
${ }^{*}$ C. tianshanica (H. Kraschen.) Tzvelev

14. CANCRINIELLA Tzvelev in Komarov, Fl. URSS 26:876 (1961). Type species: C. krascheninnikovii (Rubtzov) Tzvelev.

A compact, hirsute, basally woody half-shrub. Leaves alternate to rosulate, densely set, pectinate. Capitula solitary, long-pedunculate, discoid. Involucral bracts in 1-2 rows, rather wide, subequal. Receptacle convex, sparsely pilose, epaleate. Corolla 5-lobed. Cypselas 10 -ribbed. Pappus a corona of scales.

Distribution. C. Asia. - Monotypic.
This monotypic genus is supposed to be related to Cancrinia. Poljakov (1959) stated that it is related to Trichanthemis karataviensis, and he placed both species in Cancrinia.

3. 'TANACETINAE' Bremer \& Humphries, subtrib. nov.

Type species: Tanacetum vulgare L.

Herbae perennes vel frutices vel raro herbae annuae. Cypselae plerumque oblongae et plus quam quinquecostatae. Pappus coroniformis e squamis distinctis vel auricula adaxiali formatus, vel nullus.

Perennial herbs or shrubs, rarely annuals. Leaves alternate or sometimes rosulate, generally pinnatisect, rarely entire or few-lobed. Capitula solitary or corymbose, generally pedunculate, radiate, disciform or discoid. Involucral bracts sometimes with dark brown margins. Receptacle flat to conical, epaleate or rarely paleate (Heliocauta). Ray floret limb
white, yellow or pink. Disc corolla 5-lobed. Cypselas often oblong and more than 5-ribbed, rarely dorsiventrally flattened (Heliocauta), sometimes with sessile glands and myxogenic cells. Pappus a corona, or of separate scales, or an adaxial auricle, or absent.

Distribution (Table 9). C. Asia but also in N. America and N. Africa, some Tanacetum species introduced in the S . hemisphere. - 7 genera, 213 spp .
The genera of this subtribe, 'Tanacetinae', have no synapomorphies in common. The subtribe is probably paraphyletic (see for example, Schultz Bipontinus, 1844a), and hence put within inverted commas following the convention suggested by Patterson \& Rosen (1977) and Wiley (1981). There is still a lot of work to be undertaken on the classification of Anthemideae, and Tanacetum particularly is a key genus of the tribe. At the present state of knowledge we have felt it necessary to adopt a provisional subtribe comprising Tanacetum and a number of odd genera apparently related to this genus.

There are several segregate genera and groups of genera, possibly even whole subtribes, which are related to parts of Tanacetum, which is thus paraphyletic as presently circumscribed. Apparent examples of such genera are those classified in this subtribe. Subtribes which probably have their sister groups within Tanacetum include Gonosperminae, Handeliinae, and Artemisiinae. The remaining subtribes, excluding Ursiniinae and Cancriniinae, may form one group (as indicated by the cladogram) or a number of groups also with their sister groups within Tanacetum. In fact, Tanacetum is a paraphyletic group basal to large parts of the tribe. The cladogram shown here is the single most parsimonious one derivable from the present data matrix, but the picture may be quite different when Tanacetum is resolved into smaller monophyletic units. The whole complex is in need of detailed investigation, both on the generic and the specific level.
Clades and characters - Fig. 4, Tables 2, 10.

Fig. 4 Cladogram of the 'Tanacetinae' produced by the ie option in Hennig86. Cladogram length $=16$, consistency index $=100$, retention index $=100$.

Provisional group Ta1 - subtribe 'Tanacetinae'
There is no autapomorphy for this group, but as explained above Tanacetum probably contains the sister groups of the other genera.

Tanacetum

175 Embryo sac tetrasporic. The 10 Tanacetum species investigated embryologically (Harling 1951; see discussion under Tanacetum) are all tetrasporic. The other genera of 'Tanacetinae' have not been investigated.

Opisthopappus

163 Pappus of separate, mainly abaxial, subulate scales.

Table 9 General distribution of Tanacetinae and genera. $x=$ indigenous, $o=$ introduced.

	N.Am.	EurAsia	$\begin{aligned} & \text { C.\& E. } \\ & \text { Asia } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { Asia } \end{aligned}$	S.Eur.	N.Afr.	S.Afr	Austr. N.Zeal.	S.Am.
Tanacetinae	x	x	x	x	x	x	o	o	o
Tanacetum	x	x	x	x	x	x	o	o	-
Opisthopappus			x						
Tanacetopsis			x						
Xylanthemum		x	x						
Lepidolopha			x						
Hippolytia			x	x					
Heliocauta						x			

Table 10 Data matrix for the Tanacetinae. $1=$ presence, $0=$ absence, ? $=$ missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

Clade Ta2

35 Capitula discoid. For reasons of parsimony the five genera of this clade are grouped together, though they probably have different sister groups within Tanacetum. The radiate species Xylanthemum tianshanicum is probably misplaced in this genus.

Tanacetopsis

There is no autapomorphy for this genus.
Clade Ta3

2 Plants shrubby.

Xylanthemum

166 Pappus adaxially long.

Lepidolopha

37 Involucre rather narrowly urceolate.
38 Involucral bracts in 4-7 rows.
Clade Ta4
44 Involucral bracts with dark brown margins. This character is present also in several Tanacetum and some Tanacetopsis species.

51 Floral parts with resin canals. Floral resin canals also occur in scattered species of the other genera of the subtribe.

172 Pappus absent in ray and disc cypselas.

Hippolytia

29 Capitula densely corymbose. Corymbose capitula are common in Tanacetum and present also in some species of Tanacetopsis and Lepidolopha. Some specialized alpine species of Hippolytia have solitary capitula.
92 Anthers caudate.

Heliocauta

45 Receptacle paleate.
100 Style immersed in a lobed nectary.
114 Cypselas dorsiventrally flattened.
138 Cypselas with scattered elongated resin sacs.
15. TANACETUM L., Sp. pl.: 1028 (1753). Type species: T. vulgare L. - Balsamita Miller Gymnocline Cass. - Hemipappus K. Koch Pyrethrum Zinn - Spathipappus Tzvelev.

Perennial, rarely annual herbs or seldom small, basally woody half-shrubs. Leaves alternate or rarely rosulate, pinnatifid to pinnatisect or rarely entire, serrate. Capitula solitary or corymbose, radiate, disciform, or discoid. Involucral bracts sometimes with a dark brown margin. Receptacle flat or convex, epaleate. Ray florets female or neuter; limb yellow, white, or pink. Disc corolla 5-lobed. Cypselas generally oblong, 5-12-ribbed, often with sessile glands, never with myxogenic cells. Pappus a short or well developed corona, sometimes of short free scales, rarely an adaxial auricle (very rarely absent). Embryo sac tetrasporic.

Distribution. Europe and temperate Asia, also in N. Africa (T. annuum, T. corymbosum) and several species in N . America, some species introduced in the S. hemisphere. 152 spp.

Tanacetum s. l. is a large and poorly understood boreal genus with many little-known Asian representatives. Variation in habit, foliage, inflorescences, and capitula structure is considerable. As presently circumscribed, the genus may be recognized by the epaleate receptacle and the non-myxogenic, generally straight and ribbed cypselas with a coroniform or rarely auriculate pappus. Occasional species with epappose cypselas currently placed in Tanacetum are probably mis-
placed and are likely to be transferred to other genera.
One example of a probable misplaced species is T. microphyllum, with triangular apical anther appendages and thinwalled, obovoid cypselas with minute pappus scales and no ribs. These characters are reminiscent of subtribe Artemisiinae, where this species probably should be accommodated.

Pyrethrum differs from Tanacetum s. s. by its white or pink rays. Tanacetum s. s. has discoid or disciform capitula or, if radiate, with yellow rays. Tzvelev (in Komarov, 1961) diagnosed Pyrethrum as white-rayed and Tanacetum as yellowrayed or disciform (heterogamous). He classified discoid (homogamous) species in Cancrinia. Tzvelev also noted the heterogeneous nature of Pyrethrum and speculated that Cancrinia (s. 1.) evolved from Pyrethrum by loss of rays, whereafter Tanacetum (s. s.) evolved from Cancrinia by transformation of the outer, yellow disc florets into short, yellow rays. Except for the often short lamina the yellow rays of Tanacetum (s. s.) are similar to the white or pink ones of Pyrethrum. In other Anthemideae, e.g. Cotula, where pseudorays have evolved from the disc florets, their discoid nature is clearly recognized. Also ray colour is very homoplasious within the tribe, many well-defined genera having species with both white and yellow rays. The relationship between Pyrethrum and Tanacetum s. s. is close and involves several sister group relationships between species and groups of species currently classified in the two genera. We follow Heywood in Flora europaea (Tutin et al., 1976; also Heywood, 1954) and Grierson in Flora of Turkey (Davis, 1975) in uniting the two genera.

Tzvelev (in Komarov, 1961) recognized 14 sections of Pyrethrum and four sections of Tanacetum. Sections Leucanthemopsis and Pyrethrum section Richteria are considered by us as separate genera in different subtribes. Section Balsamita (T. balsamita) is sometimes considered as a separate genus distinguished by its entire, serrate leaves. Harling (1951) in describing the unusual tetrasporic embryo sac development and Favarger (1966) referring to chemistry both recommended that Balsamita should be kept separate from Tanacetum. The actual presence of a tetrasporic embryo sac in Balsamita seems to strengthen its position within Tanacetum (together with the type species T. vulgare and others), though there is a difference in embryo sac development. Chemical evidence is far too scattered to support a removal of Balsamita from Tanacetum. In morphology Balsamita is similar to several representatives of Pyrethrum sensu Tzvelev and we follow him and Grierson in Flora of Turkey (Davis, 1975) in reducing Balsamita to synonymy.

Tzvelev's other sections of Pyrethrum and Tanacetum are a mixture of isolated and, in most cases, vaguely defined entities. Pyrethrum sect. Trichanthemopsis with the single species P. tianshanicum has been transferred to Xylanthemum. Other more or less isolated sections are the woody Pyrethrum sect. Xylopyrethrum and Tanacetum sect. Asterotricha. The woody sections, subtribe Cancriniinae, and the shrubby genera Xylanthemum and possibly also Lepidolopha may be more closely related than indicated by the present classification.

Harling (1951) reported tetrasporic embryo sacs in all 10 species of Tanacetum so far investigated (T. balsamita, T. camphoratum, T. cinerariifolium, T. coccineum (Chrysanthemum marschallii), Tanacetum corymbosum, T. macrophyllum, T. millefolium, T. parthenium, T. roseum and T. vulgare. Interestingly, these species represent nine of

Tzvelev's different sections, but not the more isolated ones mentioned above.

Tzvelev accepted only heterogamous (disciform or yellowrayed) species in Tanacetum s. s. Thus the discoid T. argenteum was accommodated in the genus Hemipappus, further distinguished by its auriculate pappus. On other characters Hemipappus fits well into Tanacetum and it was not accepted as a genus by Grierson in Flora of Turkey, who included not only T. argenteum but also some related Turkish endemic species (T. depauperatum, T. haradjanii, T. tomentellum) in Tanacetum. This solution is followed here, and we include other species with an auriculate pappus in Tanacetum (formerly Spathipappus, discussed below). Except for the pappus there are no indications that Hemipappus and Spathipappus are closely related sister groups.

Spathipappus described by Tzvelev in Flora URSS, is supposed to differ from Pyrethrum by its auriculate pappus and sterile rays. Muradyan (1970) found that the fruits are very similar to those of other Tanacetum species and transferred S. griffithii to Tanacetum. The other two species, S. chitralensis and S. porphyrostephanus, are recombined here.

The list of species is compiled mainly from Flora europaea (Tutin et al., 1976), Flora of Turkey (Davis, 1975), and Flora URSS (Komarov, 1961, including Pyrethrum) with species described later or from other areas added.
T. abrotanifolium (L.) Druce. Turkey, Caucasus, Iran.
T. abrotanoides Bremer \& Humphries, nom. nov. Basionym: Pyrethrum abrotanifolium Bunge ex Ledeb., Fl. ross. 2: 549 (1845) - Note: In Tanacetum the epithet abrotanifolium is already occupied by the preceding species in the list. C. Asia, China in Xinjiang.
T. achilleifolium (M. Bieb.) Schultz-Bip. E. Europe, C. Asia. T. akinfievii (Alexej.) Tzvelev. Caucasus.
T. alatavicum Herder (Pyrethrum alatavicum (Herder) O. \& B. Fedtsch.). C. Asia, Mongolia, China in Xinjiang.
T. albipannosum Huber-Mor. \& Grierson. Turkey.
T. alyssifolium (Bornm.) Grierson. Turkey.
T. annuum L. SW Europe in France, Spain, and Portugal, N. Africa in Morocco.
*T. arctodzhungaricum (Golosk.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum arctodzhungaricum Golosk. in Bot. Mater. Gerb. Inst. Bot. Akad. Nauk Kazakh. SSR 7: 35 (1971). C. Asia.
T. archibaldii Podl. Iran.
T. argenteum (Lam.) Willd. (Hemipappus argenteus (Lam.) Tzvelev, Hemipappus canus K. Koch). Turkey, Middle East, Caucasus.
*T. argyranthemoides (Boiss. \& Kotschy) Schultz-Bip. Iran.
T. armenum (DC.) Schultz-Bip. (Pyrethrum heldreichianum Fenzl ex Tchich.). Turkey.
T. aromaticum (Tzvelev) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum aromaticum Tzvelev in Komarov, Fl. URSS 26: 222 (1961). - Note: the name Pyrethrum aromaticum must be considered a new species described by Tzvelev, and not a new combination based on Tripleurospermum aromaticum Rupr. ex Boiss. as stated by Tzvelev. That name was only published pro syn. by Boissier (1875: 334). Caucasus.
*T. artemisioides Schultz-Bip. in Hook. f. Himalaya.
*T. atkinsonii (C. B. Clarke) Kitam. (Pyrethrum atkinsonii (C. B. Clarke) Ling \& Shih). China, Himalaya.
T. aucheranum (DC.) Schultz-Bip.(Pyrethrum aucheranum DC.). Turkey, Caucasus.
T. aucheri DC. Turkey, Syria, Lebanon, Israel.
T. audibertii (Req.) DC. Sardinia.
T. balsamita L. (Balsamita major Desf., Pyrethrum balsamita (L.) Willd., Pyrethrum balsamitoides (Náb.) Tzvelev, Pyrethrum majus (Desf.) Tzvelev). SW Asia from Turkey, Caucasus, Iran, and Afghanistan, also widely cultivated and naturalized.
T. bamianicum Podl. Afghanistan.
*T. barclayanum DC. (T. turlanicum (Pavlov) Tzvelev). C. Asia, China in Xinjiang.
T. bipinnatum (L.) Schultz-Bip. NE Europe, Siberia, Alaska.
T. boreale Fischer ex DC. Siberia, C. Asia and Far East, China, Korea, Alaska, Canada.
T. budjurnense (Rech. f.) Tzvelev. Iran.
*T. cadmeum (Boiss.) Heyw. Turkey.
T. camphoratum Less. Western N. America from British Columbia S. to California.
T. canescens DC. (T. gilliatii (Turrill) Parsa, T. modestum (Heimerl ex Stapf) Parsa). Turkey, Caucasus, Iran.
T. cappadocicum (DC.) Schultz-Bip. Turkey.
T. changaicum (H. Kraschen. ex Grubov) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum changaicum H. Kraschen. ex Grubov in Bot. Mater. Gerb. bot. Inst. V. A. Komorova 27: 23 (1955). Mongolia.
T. chiliophyllum (Fischer \& C. Meyer) Schultz-Bip. (T. heimerli (Náb.) Parsa, T. oligocephalum (DC.) SchultzBip.). Turkey, Caucasus, Iraq, Iran.
T. chitralense (Podl.) Bremer \& Humphries, comb. nov. Basionym: Spathipappus chitralensis Podl., Fl. iranica 158: 151 (1986). Pakistan.
T. cilicium (Boiss.) Grierson. Turkey, Middle East, Iraq.
T. cinerariifolium (Trevir.) Schultz-Bip. (Pyrethrum cinerariifolium Trevir). SE and E. Europe, Caucasus, C. Asia, China, often cultivated as the source of the insecticide pyrethrin.
T. coccineum (Willd.) Grierson (Pyrethrum coccineum (Willd.) Vorosch., Pyrethrum chamaemelifolium (Sommier \& Levier) Sosn.). Turkey, Caucasus, Iran, often cultivated as the garden 'Pyrethrum'.
T. corymbiforme (Tzvelev) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum corymbiforme Tzvelev in Komarov, Fl. URSS 26: 873 (1961). C. Asia, China in Xinjiang.
T. corymbosum (L.) Schultz-Bip. (Pyrethrum corymbosum (L.) Willd., Pyrethrum clusii Fischer ex Reichb.). N. Africa in Morocco and Algeria, most of Europe except N. parts, Turkey, Caucasus, C. Asia.
*T. crassipes (Stchegl.) Tzvelev. C. Asia, China in Xinjiang.
T. daghestanicum (Rupr. ex Boiss.) Bremer \& Humphries, comb. nov. Basionym: Chamaemelum daghestanicum Rupr. ex Boiss., Fl. orient. 3: 334 (1875) (Pyrethrum daghestanicum (Rupr. ex Boiss.) Rupr. ex Flerov). Caucasus.
*T. demetrii (Manden.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum demetrii Manden. in Zametki Sist. Geogr. Rast. 22: 60 (1961). Caucasus.
T. densum (Labill.) Schultz-Bip. Turkey.
T. depauperatum (Post) Grierson. Turkey.
T. dolomiticum (Galushko) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum dolomiticum Galushko in Novit. Syst. Pl. Vasc. Acad. Sci. URSS 6: 218 (1970). Caucasus.
*T. dumosum Boiss. Iran.
T. eginense (Hausskn. ex Bornm.) Grierson. Turkey.
*T. elongatum (Bornm. \& Gauba) Parsa. Iran.
*T. falcatolobatum H. Kraschen. (Cancrinia maximoviczii Winkler). China.
T. falconeri Hook. f. Himalaya.
T. ferulaceum (Webb ex Berth.) Schultz-Bip. Canary Islands.
*T. funkii Schultz-Bip. ex Willk. SW Europe in Spain.
${ }^{*}$ T. galae (Popov) Nevski (Pyrethrum galae Popov). C. Asia.
T. galushkoi (Prima) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum galushkoi Prima in Nov. Sist. Vysshikh Rast. 11: 277 (1974). Caucasus.
T. germanicopolitanum (Bornm. \& Heimerl) Grierson. Turkey.
T. ghoratense Podl. Afghanistan.
T. glanduliferum (Sommier \& Levier) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum glanduliferum Sommier \& Levier, Decas Comp. Nov. Cauc. 87 (1895). Caucasus.
*T. griffithii (C. B. Clarke) Muradyan (Spathipappus griffithii (C. B. Clarke) Tzvelev). Afghanistan, C. Asia, Himalaya.
T. grossheimii (Sosn.) Muradyan (Pyrethrum grossheimii Sosn.). Caucasus, Iran.
T. haradjanii (Rech. f.) Grierson. Turkey.
*T. haussknechtii (Bornm.) Grierson. Turkey.
*T. herderi Regel \& Schmal. SW Asia.
*T. heterotomum (Bornm.) Grierson. Turkey.
T. hissaricum (H. Kraschen.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum hissaricum H. Kraschen. in Feddes Reprium 26: 26 (1929). C. Asia.
T. hololeucum (Bornm.) Podl. Iran.
T. huronense Nutt. N. America in Alaska, Canada and Michigan.
T. karelinianum Bremer \& Humphries, nom. nov. Basionym: Pyrethrum karelinii H. Kraschen. in Nov. Sist. Vysshikh Rast. 9: 157 (1946). C. Asia.
${ }^{*}$ T. karelinii Tzvelev. C. Asia.
T. kaschgarianum Bremer \& Humphries, nom. nov. Basionym: Pyrethrum kaschgaricum H. Kraschen. in Nov. Sist. Vysshikh Rast. 9: 158 (1946) (non T. kaschgaricum H. Kraschen.). China.
T. kelleri (Krylov \& Plotn.) Takht. (Chrysanthemum kelleri Krylov \& Plotn., Pyrethrum kelleri (Krylov \& Plotn.) H. Kraschen.). C. Asia.
T. khorassanicum (H. Kraschen.) Parsa (T. czerniakowskae (H. Kraschen.) Parsa). Iran.
T. kotschyi (Boiss.) Grierson (Pyrethrum kotschyi Boiss.). Turkey, Caucasus, Iraq, Iran.
T. krylovianum (H. Kraschen.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum krylovianum H. Kraschen. in Bot. Mater. Gerb. bot. Inst. V. A. Komorova 9: 155 (1946). C. Asia, China in Xinjiang.
*T. kubense (Grossh.) Muradyan (Pyrethrum kubense Grossh.). Caucasus.
*T. lanuginosum Schultz-Bip. \& Herder (Pyrethrum lanuginosum (Schultz-Bip. \& Herder) Tzvelev). E. Siberia, Mongolia.
T. leptophyllum (Steven) Schultz-Bip. (Pyrethrum leptophyllum Steven). Caucasus.
*T. longipedunculatum (Sosn.) Tzvelev. Caucasus.
*T. macrocephalum Pampan. Himalaya.
T. macrophyllum (Waldst. \& Kit.) Schultz-Bip. (Pyrethrum macrophyllum (Waldst. \& Kit.) Willd.). C. and SE Europe, Turkey, Caucasus.
T. marionii (Albov) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum marionii Albov in Bull. Herb. Boissier 3: 92 (1895). Caucasus.
T. maymanense Podl. Afganistan.
T. microphyllum DC. SW Europe in Spain and Portugal.
*T. mikeschinii (Tzvelev) Takht. (Pyrethrum mikeschinii Tzvelev). C. Asia.
T. millefolium (L.) Tzvelev (T. kittaryanum (C. Meyer)

Tzvelev). E. Europe, S. Siberia, C. Asia.
${ }^{*}$ T. mucroniferum Huber-Mor. \& Grierson. Turkey.
T. mucronulatum (Hoffsgg \& Link) Heyw. SW Europe in Portugal.
T. nitens (Boiss. \& Noë) Grierson. Turkey.
T. nivale Schultz-Bip. Iraq.
T. niveum (Lagasca) Schultz-Bip. (Pyrethrum fruticulosum Biehler). Caucasus.
T. nuristanicum Podl. Afghanistan.
*T. odessanum (Klokov) Tzvelev. E. Europe.
T. oltense (Sosn.) Grierson. Turkey.
T. ordubadense (Manden.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum ordubadense Manden. in Nov. Sist. Vysshikh Rast. 19: 358 (1959). Caucasus.
T. oxylepis (Bordz.) Grierson. Caucasus, Turkey.
T. oxystegium (Sosn.) Grierson. Turkey.
*T. paczoskii (Zef.) Tzvelev. Krym.
T. pakistanicum Podl. Pakistan.
T. paleaceum Podl. Afghanistan.
*T. paradoxum Bornm. Iran.
T. parthenifolium (Willd.) Schultz-Bip. (Pyrethrum parthenifolium Willd.). SW Asia from Turkey to Caucasus, Iran, Aghanistan, and C Asia.
T. parthenium (L.) Schultz-Bip. (Pyrethrum parthenium (L.) Smith). N. Africa, SE and E. Europe, SW Asia from Turkey to Caucasus, Iran, Aghanistan, and C. Asia, also widely naturalized.
*T. petiolosum Pampan. Himalaya.
T. petrareum (Shih) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum petrareum Shih in Bull. bot. Lab. n.-east For. Inst. 6: 10 (1980). China.
*T. peucedanifolium (Sosn.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum parthenifolium Willd. var. peucedanifolium Sosn. in Trudy tiflis. bot. Sada 17: 35 (1915) (Pyrethrum peucedanifolium (Sosn.) Manden.). Caucasus.
${ }^{*} T$. pinnatum Boiss. (T. flavovirens (Boiss.) Tzvelev, T. tamrutense (Sosn.) Sosn.). Turkey, Caucasus, Iraq, Iran.
T. podlechii Bremer \& Humphries, nom. nov. Basionym: Pyrethrum komarovii Sosn. in Dokl. Akad. Nauk armyan. SSR 2 (4): 119 (1945) (non Tanacetum komarovii (Winkler) Muradyan). Caucasus.
T. polycephalum Schultz-Bip. (T. argyrophyllum (K. Koch) Tzvelev, T. duderanum (Boiss.) Tzvelev, T. heterophyllum Boiss., T. junesarense (Bornm.) Parsa, T. myriophyllum Willd.). Turkey, Caucasus, Iraq, Iran.
T. porphyrostephanum (Rech. f.) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum porphyrostephanum Rech. f., Symb. Afghan. 2: 47 (1955) (Spathipappus porphyrostephanus (Rech. f.) Tzvelev). Iran.
T. poteriifolium (Ledeb.) Grierson (Pyrethrum poteriifolium Ledeb.). Turkey, Caucasus.
T. praeteritum (Horw.) Heyw. Turkey.
T. pseudoachillea Winkler. C. Asia.
T. ptarmiciflorum (Webb \& Berth.) Schultz-Bip. Canary Islands.
${ }^{*}$ T. pulchellum (Turcz.) Schultz-Bip. (Pyrethrum pulchellum Turcz.). E. Siberia.
T. pulchrum (Ledeb.) Schultz-Bip. (Pyrethrum pulchrum Ledeb.). C. Asia, Mongolia, China in Xinjiang.
T. punctatum (Desr.) Grierson (Pyrethrum punctatum (Desr.) Bordz. ex Sosn.). Turkey, Caucasus.
*T. richterioides (Winkler) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum richterioides Winkler in Trudy imp. S.-Peterb. bot. Sada 10: 86 (1887) (Pyrethrum richterioides (Winkler) H. Kraschen.). China.
${ }^{*} T$. robustum Hook. f. \& Thomson ex C. B. Clarke. Himalaya.
T. roseum (Adams) Schultz-Bip. (Pyrethrum roseum (Adams) M. Bieb.). Caucasus.
T. roylei (DC.) Podl. W. Himalayas.
T. salsugineum Podl. Iran.
*T. sanguineum (Parsa) Parsa. Iran.
T. santolina Winkler. S. European USSR, S. Siberia. C. Asia, China in Xinjiang.
*T. saxicolum (H. Kraschen.) Tzvelev. C. Asia.
T. sclerophyllum (H. Kraschen.) Tzvelev. S. European USSR.
*T. scopulorum (H. Kraschen.) Tzvelev. C. Asia, China in Xinjiang.
T. semenovii Herder (Pyrethrum semenovii (Herder) Winkler ex O. \& B. Fedtsch.). C. Asia.
T. sericeum (Adams) Schultz-Bip. (Pyrethrum sericeum (Adams) M. Bieb.). Turkey, Caucasus.
T. sevanense (Sosn.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum sevanense Sosn. ex Gross., Fl. Kauk. 4: 137 (1934). Caucasus, Iran.
T. silaifolium (Steven) Schultz-Bip. (Pyrethrum silaifolium Steven). Caucasus.
T. silvicola Podl. Afghanistan.
T. sinaicum (Fresen.) Del. ex Bremer \& Humphries, comb. nov. Basionym: Santolina sinaica Fresen., Mus. senckenb. 1: 83 (1833) (Pyrethrum santolinoides DC.) - Note: The combination Tanacetum sinaicum has hitherto not been validly published; it was only published pro syn. by de Candolle (1837: 59). Middle East in Sinai.
${ }^{*}$ T. sipikorense (Bornm.) Grierson (Pyrethrum oxylepis (Bordz.) Tzvelev). Turkey, Caucasus.
T. songaricum (Tzvelev) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum songaricum Tzvelev in Komarov, Fl. URSS 26: 874 (1961). C. Asia.
T. sorbifolium (Boiss.) Grierson (Pyrethrum sorbifolium Boiss.). Turkey, Caucasus.
*T. stapfianum (Rech. f.) Podl. Iran.
T. tabrisianum (Boiss.) Sosn. \& Takht. Turkey, Caucasus, Iran.
T. tanacetoides (DC.) Tzvelev. C. Asia, Mongolia, China in Xinjiang.
T. tatsienense (Bureau \& Franchet) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum tatsienense Bureau \& Franchet in J. Bot. 5: 72 (1891) (Pyrethrum tatsienense (Bureau \& Franchet) Ling ex Shih). China in Tibet.
T. tenuisectum (Boiss.) Podl. Iran.
T. tenuissimum (Trautv.) Gross. Caucasus, Iran, Afghanistan.
T. tirinense Podl. Afghanistan.
T. tomentellum (Boiss.) Grierson. Turkey.
T. trichophyllum (Sosn.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum trichophyllum Sosn. in Zametki Sist. Geogr. Rast. 15: 2 (1949) (non Griseb.) (Pyrethrum tricholobum Sosn. ex Manden.). Caucasus.
T. trifoliolatum Podl. Iran.
*T. turcomanicum (H. Kraschen.) Tzvelev. Iran, C. Asia.
${ }^{*}$ T. ulutavicum Tzvelev. C. Asia.
T. uniflorum (Fischer \& C. Meyer ex DC.) Schultz-Bip. Turkey, Caucasus, Iran.
*T. uralense (H. Kraschen.) Tzvelev. E. Europe, S. Siberia, C. Asia.
*T. vahlii DC. SW Europe in Spain.
T. vulgare L. Throughout most of Europe and temperate

Asia, introduced in America, Australia and New Zealand.
T. walteri (Winkler) Tzvelev. Iran, C. Asia.
${ }^{*} T$. willkommii Schultz-Bip. SW Europe in Spain.
*T. yabrudae (Mout.) Charpin \& Dittrich (Pyrethrum yabrudae Mout.). Middle East in Syria.
T. zahlbruckneri (Náb.) Grierson. Turkey.
16. OPISTHOPAPPUS Shih in Acta phytotax. sin. 17: 110 (1979). Type species: O. taihangensis (Ling) Shih.

Perennial herbs with basally somewhat woody stems. Leaves alternate, pinnatisect. Capitula solitary, radiate. Receptacle convex to conical, epaleate. Ray florets female, fertile; limb white or pinkish, many-veined. Disc corolla 5 -lobed, with sessile glands. Cypselas obovoid, $3-5$-ribbed, thin-walled, with myxogenic cells. Pappus of separate, mainly abaxial, subulate scales.

Distribution. NE central China. -2 spp .
The position of this genus is unclear. It appears to be a derivative of Tanacetum, including Pyrethrum, where the type species was formerly accommodated. According to Shih it differs from Pyrethrum and Spathipappus (here included in Tanacetum) by its thickly ribbed cypselas and by its mainly abaxial pappus of separate scales, rather than a corona or an auricle. The cypsela ribs as such are not thick but since they are invested with large myxogenic cells, dry cypselas appear thickly ribbed. The presence of myxogenic cells is indeed a character distinguishing Opisthopappus from Tanacetum, which has non-myxogenic cypselas.
O. longilobus Shih
O. taihangensis (Ling) Shih
17. TANACETOPSIS (Tzvelev) Kovalevsk. in
Vvedensky, Fl. uzbekistana 6: $138(1962)$). Type
species: T. mucronata (Regel \& Schmalh.)
Kovalevsk. - Cancrinia sect. Tanacetopsis Tzvelev.

Perennial herbs or basally woody half-shrubs. Leaves alternate, pinnatisect. Capitula solitary or generally laxly to densely corymbose, discoid. Involucral bracts sometimes with dark brown margins. Receptacle convex, epaleate, rarely sparsely pilose. Corolla 5 -lobed. Cypselas 5 -ribbed, sometimes with sessile glands, generally with myxogenic cells. Pappus a corona of free or united scales.

Distribution. Iran, Afghanistan and C. Asia. - 21 spp .
Tanacetopsis is based on a section of Cancrinia described by Tzvelev (1971) and in Komarov (1961). Tzvelev transferred a number of Tanacetum and Lepidolopsis species to Cancrinia, although he noted that his Cancrinia sections could be treated as separate genera. He argued that their relationship was shown by similar floret, cypsela, and pollen morphology. The type species of Cancrinia (see below) is very different from Tanacetopsis species, in habit as well as floret and cypsela morphology. The removal of Tanacetopsis from Cancrinia is
well justified (Kovalevskaja, 1972), but we doubt its status as a genus separate from Tanacetum, at least as presently circumscribed.
Tzvelev noted that some species of Cancrinia, i. e. Tanacetopsis, have a sparsely pilose receptacle, a character which does not occur in Tanacetum. Since only some species are involved, however, it cannot be used as a synapomorphy for the genus. The alleged difference in shape of involucre, also noted by Tzvelev, campanulate in Cancrinia and Tanacetopsis and cyathiform in Tanacetum, breaks down after examination of the numerous species involved.
Tzvelev also noted that his monotypic section Leptanthemum of Pyrethrum (Tanacetum leptophyllum) is almost identical to some species of Cancrinia sect. Tanacetopsis (e.g. the type species) except in being radiate rather than discoid. In fact, Tanacetopsis differs from Tanacetum simply by homogamous (discoid) as opposed to heterogamous capitula. With the inclusion of Hemipappus in Tanacetum there are also discoid representatives of Tanacetum. Podlech (in Podlech et al., 1986) included Tanacetopsis as a section of Tanacetum. Since we have seen only limited material of Tanacetopsis and since this whole Tanacetum group is in need of generic revision, we retain Tanacetopsis provisionally as a genus.
T. afghanica (Gilli) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum afghanicum Gilli in Feddes Reprium Spec. nov. veg. 68: 93 (1963) (Tanacetum afghanicum (Gilli) Podl.)
${ }^{*} T$. botschantzevii (Kovalevsk.) Kovalevsk. (Cancrinia botschantzevii (Kovalevsk.) Tzvelev)
T. doabensis (Podl.) Bremer \& Humphries, comb. nov. Basionym: Tanacetum doabense Podl., Fl. iranica 158: 131 (1986).
*T. eriobasis (Rech. f.) Kovalevsk. (Tanacetum eriobasis (Rech. f.) Kovalevsk.)
*T. ferganensis (Kovalevsk.) Kovalevsk. (Cancrinia ferganensis (Kovalevsk.) Tzvelev)
T. freitagii (Podl.) Bremer \& Humphries, comb. nov. Basionym: Tanacetum freitagii Podl., Fl. iranica 158: 132 (1986).
T. golovskovii (Polj.) Karmysch. (Cancrinia golovskovii (Polj.) Tzvelev)
T. hedgei (Podl.) Bremer \& Humphries, comb. nov. Basionym: Tanacetum hedgei Podl., Fl. iranica 158: 130 (1986).
*T. kamelinii Kovalevsk.
T. karataviensis (Kovalevsk.) Kovalevsk. (Cancrinia karatavica Tzvelev)
*T. kjurendaghii Kurbanov
*T. krascheninnikovii (Nevski) Kovalevsk. (Cancrinia nevskii Tzvelev)
T. mucronata (Regel \& Schmalh.) Kovalevsk.
*T. pjataeviae (Kovalevsk.) Karmysch. (Cancrinia pjataeviae (Kovalevsk.) Tzvelev)
*T. platyrachis (Boiss.) Kovalevsk.
T. santoana (H. Kraschen., Popov \& Vved.) Kovalevsk. (Cancrinia santoana (H. Kraschen., Popov \& Vved.) Tzvelev)
*T. setacea (Regel \& Schmalh.) Kovalevsk. (Cancrinia setacea (Regel \& Schmalh.) Tzvelev)
T. submarginata (Kovalevsk.) Kovalevsk. (Cancrinia submarginata (Kovalevsk.) Tzvelev)
*T. subsimilis (Rech. f.) Kovalevsk. (Cancrinia subsimilis
(Rech. f.) Tzvelev, Tanacetum subsimile (Rech. f.) Kovalevsk.)
*T. tripinnatifida (Oliver) Kovalevsk.
T. urgutensis (Popov) Kovalevsk. (Cancrinia urgutensis (Popov) Tzvelev)
18. XYLANTHEMUM Tzvelev in Komarov, Fl. URSS 26: 877 (1961). Type species: X. fisherae (Aitch. \& Hemsley) Tzvelev.
Shrublets generally with virgate eventually leaf-less stems, sometimes much woody basally. Leaves alternate, pinnatisect. Capitula solitary, pedunculate, discoid or possibly also radiate with white rays. Involucral bracts in several rows, the outer much smaller than the inner. Receptacle flat, epaleate. Corolla 5-lobed. Cypselas oblong, 5-6-ribbed, generally with sessile glands and myxogenic cells. Pappus an adaxial auricle or a corona of several adaxially more developed scales.

Distribution. Iran, Afghanistan and C. Asia. - 9 spp.
According to Tzvelev (in Komorov, 1961) Xylanthemum differs from Tanacetum by its homogamous (discoid) capitula, flat receptacle, and auriculate pappus. However, these characters occur also in Tanacetum with Hemipappus and Spathipappus included (see discussion under Tanacetum). Furthermore, X. pamiricum has a pappus of free scales developed more strongly on the adaxial side, probably a plesiomorphic condition when compared to the auriculate pappus in X. fisherae. Thus, the genus as a whole has not a pappus of a single auricle but at most, as expressed by Tzvelev, an auricle sometimes cleft to the base.

Nevertheless, it is possible that Xylanthemum as circumscribed by Tzvelev is a monophyletic group defined not only by these characters as synapomorphies, but also by its shrubby habit and involucral bracts in several rows. Tzvelev also stated that the species are closely related geographicalecological races of one natural unit. Muradyan (1970) investigated fruits of Tanacetum and Xylanthemum and concluded that they are different and that Spathipappus belongs in Tanacetum rather than together with Xylanthemum, despite the similarity in pappus structure. The relationship of Xylanthemum to Tanacetum or probably rather to a part of Tanacetum, which then becomes paraphyletic by the exclusion of Xylanthemum, deserves further investigation. Lepidolopha with a similar virgate shrubby habit is clearly a related genus.

The list of species is compiled from Flora URSS (Komarov, 1961) with one radiate species transferred from Pyrethrum by Muradyan (1970) added. The position of this species, X. tianshanicum, within Xylanthemum is provisional. According to Tzvelev it is more closely related to Trichanthemis, and differs from that genus simply by its glabrous cypselas. Tzvelev placed it in the monotypic Pyrethrum section Trichanthemopsis. Muradyan, when investigating cypsela morphology, transferred it to Xylanthemum mainly because of the presence of myxogenic cells on the cypselas. In other characters, e.g. of pappus and habit, the species appears more close to Trichanthemis or Richteria. Podlech in Podlech et al. (1986) considers this genus as a section of Tanacetum.

X. fisherae (Aitch. \& Hemsley) Tzvelev

X. gilletii (Podl.) Bremer \& Humphries, comb. nov. Basionym: Tanacetum gilletii Podl., Fl. iranica 158: 140 (1986).
X. lingulatum (Boiss.) Bremer \& Humphries, comb. nov. Basionym: Pyrethrum lingulatum Boiss., Fl. orient. 3: 357 (1875).
X. macropodum (Hemsley \& Lace) Bremer \& Humphries, comb. nov. Basionym: Tanacetum macropodum Hemsley \& Lace in J. Linn. Soc. 28: 324 (1891).
X. paghmanense (Podl.) Bremer \& Humphries, comb. nov. Basionym: Tanacetum paghmanense Podl., Fl. iranica 158: 141 (1986).
X. pamiricum (Hoffm.) Tzvelev
X. polycladum (Rech. f.) Tzvelev
X. rupestre (Popov ex Nevski) Tzvelev
X. tianshanicum (H. Kraschen.) Muradyan (Pyrethrum tianshanicum H. Kraschen.)
19. LEPIDOLOPHA Winkler in Trudy imp. S. Peterb. bot. Sada 13: 236 (1894). Type species: L. komarovii Winkler.

Shrublets with virgate, basally sometimes much woody stems. Leaves alternate or basally on the woody stems also fasciculate on brachyblasts, entire or 3-lobed. Capitula solitary or corymbose, discoid. Involucre rather narrowly urceolate; involucral bracts in 4-7 rows, the outer much smaller than the inner. Receptacle flat to convex, epaleate. Corolla 5-lobed; tube basally swollen in fruit. Cypselas oblong, 6-10-ribbed, with sessile glands. Pappus of many subulate scales.

Distribution. C. Asia. -9 spp.
Lepidolopha is well characterized, for example by the entire to 3-lobed leaves and the narrowly urceolate capitula with involucral bracts in several rows. The species are closely related with vicarious distributions and they differ mainly in foliage and inflorescence characters. A possibly related genus is Xylanthemum, also shrubby and with involucral bracts in several rows, though with a wider involucre and different pappus.

Apart from the treatment by Knorring in Flora URSS (Komarov, 1961), there is also a more detailed discussion by the same author (Knorring, 1959).
L. fedtschenkoana Knorr.

* L. filifolia Pavlov
* L. gomolitzkii Kovalevsk. \& Safralieva
L. karatavica Pavlov
*L. komarovii Winkler (Tanacetum komarovii (Winkler) Muradyan)
L. kraschenennikovii Kovalevsk. \& Safralieva
L. mogoltavica (H. Kraschen.) H. Kraschen.
L. nuratavica H . Kraschen. (Tanacetum nuratavicum (H. Kraschen.) Muradyan)
*L. talasica Kovalevsk. \& Safralieva

20. HIPPOLYTIA Polj. in Bot. Mater. Gerb. bot. Inst. V. A. Komarova 18: 288 (1957). Type species: H. darvasica (Winkler) Polj.

Pubescent, sometimes densely tomentose perennial herbs. Leaves alternate and basally more or less rosulate, much pinnatisect. Capitula densely corymbose to glomerulate or rarely solitary, discoid. Involucral bracts with dark brown margins. Receptacle flat to convex, epaleate. Corolla 5-lobed. Anthers tailed. Cypselas 5-8-ribbed, sometimes with
resin canals, with sessile glands, with a more or less distinct apical rim. Pappus absent.
Distribution. C. Asia, Mongolia, China in Xinjiang and Tibet, and Himalaya (map by Shih, 1979: 68). - 19 spp.

Poljakov (1957) discussed the wide circumscription and loose definition of Tanacetum (then including also Ajania) and he found it difficult to accept both homogamous (discoid) and heterogamous (disciform) species in the same genus. Consequently Poljakov removed a number of central Asian discoid Tanacetum species to a new genus, Hippolytia. The cypselas have no pappus as opposed to the Tanacetum species. The species have a characteristic habit with much pinnatisect leaves, pedunculoid stems with crowded (rarely solitary) capitula, and involucral bracts with dark brown margins. Some high-altitude species have densely tomentose leaves crowded on vegetative shoots and short flowering stems. This alpine habit is best explained as a secondary development within the genus.

Tzvelev in Flora URSS (Komarov, 1961) stated that Hippolytia is related to Dendranthema and Ajania and that Hippolytia is intermediate between these genera, a view analogous to the position of 'Cancrinia' (s. l. incl. Tanacetopsis) between Pyrethrum and Tanacetum s. s. According to Tzvelev radiate species of Dendranthema (cf. Pyrethrum) evolved into discoid species of Hippolytia (cf. Tanacetopsis), which further evolved into disciform species of Ajania (cf. Tanacetum s. s.).

Podlech et al. (1986) included Hippolytia as a section of Tanacetum. In our opinion Hippolytia, probably together with Heliocauta, is related to part of Tanacetum as discussed under Heliocauta. Hippolytia is retained here pending a reinvestigation of the whole Tanacetum complex. It is possible that there are species of Ajania that should be transferred to Hippolytia.

Tzvelev removed some of Poljakov's species of Hippolytia to Ajania. Shih (1979) revised the genus and added a number of Chinese species. The list of species is taken from Shih's paper but with H. alashanensis listed as a synonym.
H. crassicollum (Rech. f.) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum crassicollum Rech. f. in Biol. Skr. 8 (2): 43 (1955) (Tanacetum crassicollum (Rech. f.) Podl.)
H. darvasica (Winkler) Polj.
H. delavayi (W. Smith) Shih
H. desmantha Shih
H. dolichophylla (Kitam.) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum dolichophyllum Kitam. in Acta. phytotax. geobot. Kyoto 23: 73 (1968) (Tanacetum dolichophyllum (Kitam.) Kitam.)
${ }^{*}$ H. glomerata Shih
H. gossypina (C. B. Clarke) Shih
H. herderi (Regel \& Schmalh.) Polj.
H. kaschgarica (H. Kraschen.) Polj. (H. alashanensis (Ling) Shih) - Note: In recent treatments of Hippolytia (Shih, 1979) H. kaschgarica has disappeared. It was based on Tanacetum kaschgaricum H. Kraschen. (1933) from TienShan range, Mount Ischma (China in Xinjiang). Material of this species in St. Petersburg, annotated by Krascheninnikov, appears to be the species currently known as Hippolytia alashanensis (Ling) Shih originally described as Tanacetum alashanense Ling from Ala-Shan, Inner Mongolia (China). At least, they must be closely related with the
shrubby, subspinose habit (see Ling, 1983: plate 13,1). Furthermore, H. kaschgarica which is equal to H. alashanensis is aberrant in Hippolytia and thus deserves further study.
${ }^{*} H$. kennedyi (Dunn) Ling
H. longifolia (Wallich) Shih (Tanacetum himachalense Aswal \& Mehrotra)
H. megacephala (Rupr.) Polj.
${ }^{*} H$. nana (C. B. Clarke) Shih
H. schugnanica (Winkler) Polj.
${ }^{*}$ H. senecionis (Besser) Polj.
*H. syncalathiformis Shih
H. tomentosa (DC.) Tzvelev
${ }^{*} H$. trifida (Turcz.) Polj.
H. yunnanensis (Jeffrey) Shih

21. HELIOCAUTA Humphries in Bot. Notiser 130:

 155 (1977). Type species: H. atlantica (Litard. \& Maire) Humphries.A perennial rosulate or creeping herb. Leaves in a basal rosette, pinnatisect. Capitula solitary, pedunculate, discoid. Involucral bracts with dark brown margins. Receptacle conical, paleate. Corolla 5-lobed; lobes soon brownish. Style immersed in a lobed nectary. Cypselas somewhat dorsiventrally flattened, 4-5-ribbed with 2 major lateral ribs, with scattered elongated resin sacs and with an apical erose rim. Pappus absent.

Distribution. N. Africa in Morocco. - Monotypic.

This recently described monotypic genus is difficult to place and as stated by Humphries (1977) it is not related to Anacyclus, wherein it was formerly classified. Humphries compared Heliocauta to a number of genera, notably Achil$l e a$, but refrained from indicating a possible sister group. The Achillea species discussed by Humphries, A. barrelieri and A. oxyloba, are possibly plesiomorphic within the genus and within the subtribe Achilleinae. The similarities to Heliocauta may be interpreted as symplesiomorphies, shared also by members of Tanacetum.

Another genus mentioned by Humphries is Sclerorhachis, supposed to have the same type of scattered epicarpic resin sacs. The elongated resin sacs in Heliocauta have transverse walls and are morphologically similar to the elongated rows of epicarpic myxogenic cells present in many genera. In Sclerorhachis, however, they are not resiniferous but myxogenic as in other genera, and a close relationship between Heliocauta and Sclerorhachis cannot be assumed.

Hippolytia is another possible relative of Heliocauta. They share a number of albeit homoplasious characters and can be placed together within 'Tanacetinae'. The reason for this placement is the presence of rather similar species within Tanacetum. It appears that both genera, singly or together, have their sister group within Tanacetum. One interesting species is T. tatsienense, a radiate species with short rays but otherwise very similar to Heliocauta and the single-headed species of Hippolytia.

4. GONOSPERMINAE Bremer \& Humphries, subtrib. nov.

Type species: Gonospermum fruticosum (C. Smith ex Link) Less.

Frutices vel herbae perennes, basi fruticosae. Folia multilobata lobis multis rotundatis vel interdum paucilobata vel integra et margine dentata. Capitula laxe vel dense corymbosa. Receptaculum paleaceum vel raro epaleaceum. Cypselae 5-10(-12)-costatae. Pappus e squamis parvis formatus, squama quoque costam terminanti.

Shrubs or perennial, basally woody herbs. Leaves alternate, with many rounded lobes, sometimes few-lobed or entire and dentate. Capitula laxly to densely corymbose, radiate or discoid. Receptacle flat or conical to elongated, paleate or rarely epaleate. Ray floret limb white. Disc corolla 5-lobed. Cypselas 5-10(-12)-ribbed. Pappus of small scales, each terminating a rib.
Distribution (Table 11). Canary Islands and southern Africa, mainly in Natal, one species also in Madagascar. - 3 genera, 15 spp .

Table 11 General distribution of Gonosperminae and Handeliinae and genera. $x=$ indigenous, $o=$ introduced.

	$\begin{aligned} & \text { C.\& E. } \\ & \text { Asia } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { Asia } \end{aligned}$	N.Afr.	S.Afr.
Gonosperminae			x	X
Lugoa			x	
Gonospermum			X	
Inulanthera				X
Handeliinae	X	x		
Lepidolopsis	X	x		
Polychrysum	X	X		
Pseudohandelia	X	X		
Handelia	X	X		
Sclerorhachis	x			

The interesting close relationship between the two Macaronesian genera Lugoa and Gonospermum and the southern African Inulanthera has only recently been revealed (Källersjö, 1986). Furthermore, the southern African group of species were formerly erroneously classified in Athanasia, obscuring their true relationships. The Gonosperminae is probably related to a part of Tanacetum, in the subtribe 'Tanacetinae'. Of the two Macaronesian Tanacetum species, T. ferulaceum and T. ptarmiciflorum, the latter at least is a possible close relative.
Clades and characters - Fig. 5, Tables 2, 12.

Fig. 5 Cladogram of the Gonosperminae produced by the ie option in Hennig86. Cladogram length $=9$, consistency index $=100$, retention index $=100$.

Clade Go1 - subtribe Gonosperminae
19 Leaves large with many rounded lobes. Inulanthera is very variable in leaf shape, but there are also species of Inulanthera with these kinds of leaves, very similar to those of Gonospermum and Lugoa.
45 Receptacle paleate. One species of Inulanthera is epaleate.
162 Pappus of scales or teeth projected from the ribs.

Table 12 Data matrix for the Gonosperminae. $1=$ presence, $0=$ absence, ? = missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $a=$ polymorphic but scored as the apomorphic condition.

	1111	1	1	11
	1450576	14623992	177555556666617	
	5327181	952295254	356356790567851	
22. Lugoa	alaa1?1	$1 a 1000000$	$? ? ? 000000000000$	
23. Gonospermum	al?a1?1	1 a 1111000	$? ? ? ? ? ? ? ? ? ? ? ? ? ? ?$	
24. Inulanthera	a1?a1?1	aal111111	??????????????	

Lugoa

There is no obvious autapomorphy for this genus.
Clade Go2
2 Plants shrubby.
29 Capitula densely corymbose.
35 Capitula discoid.

Gonospermum

There is no obvious autapomorphy for this genus, which appears undefined by comparison to Inulanthera.

Inulanthera

92 Anthers caudate.
95 Anthers with endothecial tissue partly or wholly polarized.
124 Cypselas with 10 (8-12) multicellular epicarpic ribs.
22. LUGOA DC., Prodr. 6: 14 (1838). Type species: L. revoluta (C. Smith ex Link) DC.

A suffruticose, basally woody perennial. Leaves alternate, pinnatisect, large and flat with rounded lobes. Capitula laxly corymbose, radiate. Receptacle conical, paleate. Ray florets female, fertile; limb white. Disc corolla 5-lobed, slightly thickened at base. Cypselas 5-ribbed. Pappus of teeth projected from the ribs.

Distribution. Canary Islands. - Monotypic.
Lugoa with radiate capitula is the most plesiomorphic member of subtribe Gonosperminae. There is no obvious autapomorphy for this monotypic genus, though the one species is clearly distinct from the species of Gonospermum. It is sometimes included in Gonospermum, but retained here in accordance with recent practice (e.g. Bramwell \& Bramwell, 1974). Furthermore, inclusion of Lugoa in Gonospermum would result in a clearly paraphyletic taxon since the discoid Gonospermum species are more closely related to Inulanthera than to Lugoa.
23. GONOSPERMUM Less., Syn. gen. Compos.: 263 (1832). Selected type species: G. fruticosum (C. Smith ex Link) Less.

Rather elaborate shrubs. Leaves alternate, pinnatisect, large and flat with many rounded lobes. Capitula corymbose, discoid. Receptacle elongated, paleate. Corolla 5-lobed,
slightly thickened at base. Cypselas 5-ribbed. Pappus of scales or teeth projected from the ribs.
Distribution. Canary Islands. -4 spp.
Gonospermum is related to Inulanthera and Lugoa. Inulanthera differs by its caudate anthers and many-ribbed cypselas. By comparison to Inulanthera, Gonospermum is undefined and paraphyletic. Bramwell \& Bramwell's (1974) Wild flowers of the Canary Islands is useful for species identification.
G. canariense (DC.) Less.
G. elegans (Cass.) DC.
G. fruticosum (C. Smith ex Link) Less.
G. gomerae Bolle
24. INULANTHERA Källersjö in Nord. J. Bot. 5: 539 (1986). Type species: I. calva (Hutch.) Källersjö.

Shrubs or rarely basally woody half-shrubs. Leaves alternate, variously lobed, dentate or entire. Capitula corymbose, discoid. Receptacle flat, paleate, rarely epaleate. Corolla 5 -lobed, with a narrow tube and a distinct limb. Anthers caudate; endothecial tissue polarized. Cypselas 8-10-ribbed, glabrous or sometimes glandular. Pappus of small scales or teeth, each terminating a rib.

Distribution. S. Africa in the E. Cape, Natal, and Transvaal, and in Lesotho, Angola (I. schistostephioides), Zimbabwe (I. nuda) and Madagascar (I. brownii). - 10 spp.
Inulanthera is recently described and is comprised of a number of species formerly included in Athanasia. The species of Inulanthera were found to differ considerably from Athanasia in cypsela anatomy, having sclerenchyma of longitudinal bundles or elongated cells in the ribs rather than sclerified parenchyma cells as in Athanasia and lacking resin canals which are present in Athanasia. The species of Inulanthera investigated chemically also have the common polyacetylenes rather than furanosesquiterpenes, which characterize Athanasia and the group of related genera within the Ursiniinae. In these features Inulanthera is similar to most Anthemideae but the genus is further characterized by its basally caudate anthers, a very unusual character in Anthemideae (occurring elsewhere only in Hippolytia and Osmitopsis).
Cypselas with ribs projected into small pappus scales or teeth, and the characteristic leaves with many rounded leaf lobes of some species (I. brownii, I. nuda, I. schistostephioides) clearly indicate a relationship to Gonospermum and Lugoa. Other species have few-lobed or dentate leaves, presumably apomorphic conditions within the genus. The South African species, all occurring in Natal, are at the species level adequately described under Athanasia by Hilliard (1977).
I. brownii (Hochr.) Källersjö (Athanasia brownii Hochr.) Note: Description in Hochreutiner, 1908.
I. calva (Hutch.) Källersjö (Athanasia calva Hutch.)
I. coronopifolia (Harvey) Källersjö (Athanasia coronopifolia Harvey)
I. dregeana (DC.) Källersjö (Athanasia dregeana (DC.) Harvey, Athanasia punctata (DC.) Harvey)
I. leucoclada (DC.) Källersjö (Athanasia leucoclada (DC.) Harvey)
I. montana (J. M. Wood \& M. Evans) Källersjö (Athanasia montana J. M. Wood \& M. Evans)
I. nuda Källersjö (Pentzia schistostephioides M. Taylor) Note: Description in Taylor, 1940.
I. schistostephioides (Hiern) Källersjö (Athanasia schistostephioides Hiern) - Note: Description in Hiern, 1898.
I. thodei (Bolus) Källersjö (Athanasia thodei Bolus)
I. tridens (Oliver) Källersjö (Athanasia tridens Oliver)

5. HANDELIINAE Bremer \& Humphries, subtrib. nov.

Type species: Handelia trichophylla (Schrenk) Heimerl.
Herbae perennes, basaliter suffruticosae et villosaetomentosae, caule haud vel pauceramoso crassiusculo medulla molli. Folia alterna vel rosulata, pinnatisecta lobis filiformibus. Capitula dense vel laxe corymbosa, raro anguste paniculata, discoidea. Cypselae plerumque parvae, quinquecostatae. Pappus coroniformis e squamis parvis formatus vel nullus.

Basally more or less woody and villous-tomentose perennials with generally few- or unbranched rather thick stems with a soft pith. Leaves alternate or rosulate, pinnatisect with filiform lobes. Capitula generally small in dense to lax corymbs or rarely in a long narrow panicle, discoid. Receptacle flat to conical, paleate or epaleate. Corolla 5-lobed. Cypselas generally small and 5 -ribbed, rarely slender with obtuse excrescences, sometimes with myxogenic cells. Pappus a corona of small scales or absent.

Distribution (Table 11). Asia, mainly central part. - 5 genera, 8 spp .

This subtribe forms a homogeneous and monophyletic group, characterized by a number of synapomorphies. The relationship of Lepidolopsis, Polychrysum, Handelia and Pseudohandelia was first noted by Tzvelev (in Komarov, 1961). Sclerorhachis was originally part of Anthemis, mainly because of its paleate receptacle but after it was placed as a section of Anthemis (Rechinger, 1944) Rechinger elevated it to generic rank of uncertain position within the tribe (Rechinger 1968). We consider that Sclerorhachis is related to Handelia and Pseudohandelia and a true member of this subtribe. This relationship has probably been obscured by the distinct habit of Sclerorhachis, with basal leaf-rosettes and laxly branched, leafless aerial stems. We interpret these stems as branches of a secondarily lax inflorescence, homologous to the dense corymbs of the other genera.

From the data matrix there is only one parsimonious solution to the generic interrelationships within Handeliinae, shown in the cladogram. The sister group of Handeliinae is probably to be found within Tanacetum, where there are several thick-stemmed species with corymbose inflorescences.
Clades and characters - Fig. 6, Tables 2, 13.

$$
\begin{aligned}
& \models \mathrm{Hal}{ }^{-} 25 \text { Lepidolopsis } \\
& 4 \text { Ha2 }\left\{\begin{array}{l}
26 \text { Polychrysum } \\
\text { Ha3 }
\end{array} \sqrt{27 \text { Pseudohandelia }} \begin{array}{l}
\text { Ha4 } \quad 28 \text { Handelia } \\
29 \text { Sclerorhachis }
\end{array}\right.
\end{aligned}
$$

Fig. 6 Cladogram of the Handeliinae produced by the ie option in Hennig86. Cladogram length $=13$, consistency index $=92$, retention index $=80$.

Table 13 Data matrix for the Handeliinae. $1=$ presence, $0=$ absence, $?=$ missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

	1111	111	111111
	1450576	13323701457	1555556666617775674
	5327181	865190293511	3356790567851560606
25.Lepidolopsis	al?a1?1	111100000000	????????????????00p
26. Polychrysum	al?a1?1	111011000000	????????????????000
27. Pseudohandeliaa1?a1?1	111010111000	?????????????????	
28. Handelia	a1?a1?1	11101000 a 00	??????????????0??
29.Sclerorhachis	a1?a1?1	1 a 1000100 aa 1	???????????????0??

Clade Ha1 - subtribe Handeliinae
8 Plants basally villous-tomentose with rather thick stems and a soft pith.

16 Leaves much pinnatisect with filiform lobes.
35 Capitula discoid.

Lepidolopsis

31 Capitula in a long narrow panicle or raceme.
Clade Ha2
29 Capitula densely corymbose. In Sclerorhachis the capitula are terminal on the loosely branched, leafless aerial stems, which are considered homologous to the branches of a corymbose inflorescence.

Polychrysum

30 Capitula very small and numerous in a large, dense, semiglobose corymb.

Clade Ha3
172 Pappus absent in ray and disc cypselas.

Pseudohandelia

109 Cypselas arcuate.
113 Cypselas slender and tuberculate with numerous obtuse excrescences.

Clade Ha4
45 Receptacle paleate.

Handelia

There is no obvious autapomorphy for this genus.

Sclerorhachis

29 reversed. See clade Ha1.
51 Floral parts with resin canals.
71 Corolla apically contracted.
25. LEPIDOLOPSIS Polj. in Bot. Mater. Gerb. bot. Inst. V. A. Komarova 19: 374 (1956). Type species: L. turkestanica (Regel \& Schmalh.) Polj.

A basally woody perennial with rather thick unbranched stems with a soft pith, villous-tomentose at base and the leaf bases. Leaves alternate, much pinnatisect with filiform lobes. Capitula small, numerous in a long panicle, discoid. Receptacle conical, epaleate. Corolla 5 -lobed, with sessile glands.

Cypselas small, 5 -ribbed. Pappus of several mainly abaxial acute scales.

Distribution. Iran, Afghanistan and C. Asia. - Monotypic. Vegetatively Lepidolopsis is very similar to Polychrysum, Handelia and Pseudohandelia. All four genera have single, unbranched or apically few-branched, basally pubescent stems with much pinnatisect leaves with filiform lobes. Lepidolopsis differs by its much elongated inflorescence and its sessile floret glands. Originally Poljakov included a number of discoid species in Lepidolopsis. These are now in other genera, mainly Tanacetum and Tanacetopsis. Both Polychrysum tadshikorum and Pseudohandelia umbellifera were also classified in Lepidolopsis by Poljakov.
26. POLYCHRYSUM (Tzvelev) Kovalevsk. in Vvedensky, Fl. uzbekistana 6: 148 (1962). Type species: P. tadshikorum (Kudr.) Kovalevsk. Cancrinia sect. Polychrysum Tzvelev.
A basally woody perennial, one to few-branched with rather thick light stems and a soft pith, villous-tomentose at the leaf bases. Leaves alternate, much pinnatisect with filiform lobes. Capitula small, numerous in a large, dense, semiglobose corymb, discoid. Receptacle convex, epaleate. Corolla 5 -lobed, with stalked glands. Cypselas small, 5 -ribbed, with stalked glands. Pappus a corona of many small scales.

Distribution. Afghanistan, C. Asia. - Monotypic.
Polychrysum is based on a monotypic section of Cancrinia, described by Tzvelev in Flora URSS (Komarov, 1961). It is clearly different from the type species of Cancrinia, and more closely related to Lepidolopsis, Handelia and Pseudohandelia. One character stressed by Tzvelev is the capitulum with only one mature fruit. This is obviously correlated to the small and numerous capitula.

27. PSEUDOHANDELIA Tzvelev in Komarov, Flora URSS 26: 878 (1961). Type species: P. umbellifera

 (Boiss.) Tzvelev.A basally woody perennial with unbranched, rather thick stems with a soft pith, villous-tomentose at the stem and leaf bases. Leaves alternate, basally approaching rosulate, much pinnatisect with filiform lobes. Capitula corymbose, discoid. Receptacle conical, epaleate. Corolla 5 -lobed, with many stalked glands. Cypselas slender and somewhat arcuate, with 5 vascular strands, tuberculate with numerous obtuse excrescences. Pappus absent.
Distribution. Iran, Afghanistan, C. Asia and China in Xinjiang. - Monotypic.
Pseudohandelia and Handelia are very similar and closely related. Their close relationship has been more or less concealed by the traditional practice of keeping taxa with and without receptacular paleae far apart in classification. The two genera are often confused. Apart from the receptacle character Pseudohandelia is also distinguished by its slender and tuberculate cypselas and the more dense, umbelliform corymb. The close relationship of Pseudohandelia to Handelia as well as to Polychrysum (treated by Tzvelev as a section of Cancrinia), and Lepidolopsis was first noted by Tzvelev (in Komarov, 1961).

The cypsela excrescences are homologous with gland stalks; glands with such stalks are present on the corolla.

28. HANDELIA Heimerl in Ost. bot. Z. 71: 215 (1922). Type species: H. trichophylla (Schrenk) Heimerl.

A basally woody perennial with few- or unbranched, rather thick stems with a soft pith, basally and at the leaf bases villous-tomentose. Leaves alternate, basally becoming almost rosulate, leaves pinnatisect, with deep sinuses and filiform lobes. Capitula small, numerous, corymbose, discoid. Receptacle conical, paleate. Corolla 5-lobed, with stalked glands. Cypselas small, 5-ribbed, with an abaxial rim. Pappus absent.

Distribution. Afghanistan, Pakistan, C. Asia and China in Xinjiang. - Monotypic.

Handelia is very similar to and closely related to Pseudohandelia, though the two genera have been placed far apart. Handelia has a paleate receptacle, whereas Pseudohandelia is epaleate. They are often confused but they are easily distinguished by the receptacle character and by their different cypselas. Handelia also has a more laxly branched inflorescence than Pseudohandelia. The relationship to Sclerorhachis is discussed below.

29. SCLERORHACHIS (Rech. f.) Rech. f. in Anz.

öst. Akad. Wiss. Mathematische
Naturwissenschaftliche Klasse 105: 242 (1968). Type species: S. caulescens (Aitch. \& Hemsley) Rech. f. Anthemis sect. Sclerorhachis Rech. f.

Rosulate basally pubescent perennials with a basal leafrosette and almost naked, loosely branched stems, basally rather thick and with a soft pith. Leaves pinnatisect, with a persistent, sclerified rachis. Capitula laxly corymbose, pedunculate, discoid. Receptacle flat to convex, paleate; paleae filiform. Corolla 5-lobed, with a distinct, apically contracted limb. Cypselas 5-ribbed, with scattered rows of myxogenic cells. Pappus absent.

Distribution. Iran and Afghanistan. - 4 spp.
The type species of Sclerorhachis was originally placed in Anthemis, though considered highly isolated (Rechinger, 1944). At a first glance Sclerorhachis seems isolated but it is a member of subtribe Handeliinae together with Handelia and Pseudohandelia (Rechinger, 1955, 1968). In Sclerorhachis the leaves are concentrated into a basal leaf-rosette and we consider the loosely branched, leafless aerial stems with terminal capitula homologous to the corymbose inflorescence of the other genera. The receptacle is furnished with filiform bristles in the same position as receptacular paleae, hence they appear homologous to paleae.
S. caulescens (Aitch. \& Hemsley) Rech. f. (Anthemis caulescens Aitch. \& Hemsley)
${ }^{*}$ S. leptoclada Rech. f.
S. platyrhachis (Boiss.) Podl. ex Rech. f.
S. polysphaera Rech. f.

6. ARTEMISIINAE Less. emend. Bremer \& Humphries, emend. nov.

Lessing in Linnaea 5: 163 (1830) ('Artemisieae'). Type species: Artemisia vulgaris L.

Herbae annuae vel perennes, suffrutices vel frutices. Capitula interdum radiata, saepe disciformia vel discoidea, corymbosa vel paniculata. Receptaculum plerumque epaleaceum. Appendix apicalis antherarum subtriangularis vel lanceolatolinearis, parietibus cellularum aliquantum incrassatis. Cypselae oblongo-obovoideae, quinque-costatae vel saepe obovoideae ecostatae, parietibus tenuibus, raro pilosae. Pappus nullus vel raro coroniformis e squamis parvis formatus.

Perennial, rarely annual herbs, half-shrubs or shrubs; indumentum frequently of dolabriform hairs. Leaves variously dissected, rarely entire. Capitula radiate or generally disciform or discoid, often rather small; inflorescence various but often corymbose or paniculate. Receptacle epaleate or very rarely paleate. Ray floret limb white, yellowish or pink. Outer florets (in disciform capitula) in one row (rarely two), female, fertile. Disc or central florets perfect and hermaphrodite or female-sterile, 5-lobed. Apical anther appendages (sub)triangular-lanceolate-linear, of rather thick-walled cells. Pollen often without or with short spines. Cypselas oblongobovoid, 5 -ribbed or generally rather small, obovoid and faintly ribbed or without ribs, thin-walled, with or without myxogenic cells in rows, rarely pilose. Pappus absent or very rarely coroniform, of small scales.

Distribution (Table 14). Worldwide but mainly northern hemisphere and especially central and E. Asia, some Artemisia species widespread as weeds. -18 genera, 634 spp.

The main genera of this subtribe are familiarly known as the Artemisia group, including the large genera Artemisia and Seriphidium (commonly considered a section of Artemisia), eight small Asian genera, and two small North American genera. The group is characterized by disciform or discoid, commonly paniculate capitula, smooth or short spined pollen, and obovoid, thin-walled, and ribless cypselas without a pappus.

However, within this subtribe we have included the probable, more plesiomorphic relatives of the Artemisia group (Fig. 7, Clades Ar1-Ar5), which in previous classifications were hidden within a broad concept of Chrysanthemum. These relatives include the radiate genera Brachanthemum, Dendranthema, Arctanthemum and Tridactylina with solitary or laxly corymbose capitula, and the disciform Ajania and Phaeostigma with densely corymbose capitula. These genera have rather thin-walled and more or less faintly ribbed cypselas always without a pappus. The apical anther appendages are synapomorphic for the whole subtribe. They are (sub)triangular to lanceolate-linear, often acute to acuminate, and composed of rather thick-walled cells, best expressed in the apomorphic representatives of the Artemisia group.

The sister group of Artemisiinae is to be found within Tanacetum, where there are species very similar to representatives of Dendranthema and Brachanthemum. The delimitation between Tanacetum and these two genera, notably Dendranthema, traditionally rests on two characters, presence of pappus and myxogenic cells on the cypselas. Pappose species without myxogenic cells are classified in Tanacetum

Table 14 General distribution of Artemisiinae and genera. $x=$ indigenous, $o=i n t r o d u c e d$.

| | N. Am. | Eur-
 Asia | C. \& E.
 Asia | SW
 Asia | S. Eur. | N. Afr. | S. Afr. | Austr. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N. Zeal. | | | | | | | | | S. Am.

and epappose species with or without myxogenic cells are classified in Dendranthema. (Pappose species with myxogenic cells represent another problem, and are more or less provisionally relegated to other genera, as exemplified by Xylanthemum tianshanicum). The relationship of Dendranthema and Artemisiinae in general to Tanacetum cannot be assessed in detail before the latter genus has been properly revised and dismantled.
The cladogram (Fig. 7) is one of many (71) equally parsimonious trees. In this case the analysis was performed with characters 29 and 31 combined into one multistate character with two apomorphic states, densely corymbose and paniculate-racemose capitula. A preliminary analysis with the binary characters as presented in the matrix (Table 15) yielded an artificial grouping of Stilpnolepis and Seriphidium supported by a reversal in character 29 , i.e. loss of the dense capitula corymbs, but the two genera are totally different in inflorescence structure. The strict consensus tree of all the equally parsimonious cladograms is almost totally collapsed, indicating the instability in our current hypothesis of Artemisiinae generic interrelationships. However, clade Ar2 with Dendranthema, Arctanthemum and Tridactylina, as well as clade Ar10, Mausolea and Picrothamnus, were supported by all cladograms and hence retained in the consensus tree.

Clades and characters - Fig. 7, Tables 2, 15.
Clade Ar1 - subtribe Artemisiinae
11 Plants with dolabriform hairs. Dolabriform, i.e. T-shaped, or Y-shaped hairs occur in most genera of this subtribe. They are also frequent in Leucantheminae, Anthemis (Anthemidinae) and some genera of Achilleinae. The character is possibly a synapomorphy at a lower level within the tribe.

93 Anthers with triangular-linear-lanceolate apical appendages, of rather thick-walled cells. This character is present in all genera, though variously expressed.
172 Pappus absent in ray and disc cypselas. Crossostephium
and one species of Sphaeromeria both have a pappus of short scales.

Brachanthemum

2 Plants shrubby. In Artemisiinae there are many transitions from woody perennials to half-shrubs or shrubs. Hence the character is difficult to apply and it is present within several genera not scored in the matrix.

Clade Ar2

44 Involucral bracts with dark brown margins. This character is present also within Ajania, Phaeostigma, and Tanacetum, where the sister group of the subtribe is found. Hence the character may be plesiomorphic within the subtribe.

Dendranthema

This genus is plesiomorphic compared to Arctanthemum, Tridactylina and possibly also compared to the rest of the subtribe.

Arctanthemum

6 Plants rhizomatous with rosulate, spathulate-obovate-linear leaves.
15 reversed. Leaves not variously deeply lobed or divided, but entire.

Tridactylina

1 Plants annual.

52 reversed. Ray floret limb not white, but yellow. There are several species of Dendranthema with yellow rays.

Clade Ar3

29 Capitula densely corymbose. Inflorescences are variable and complicated in subtribe Artemisiinae. Most of the Artemisia group of genera have paniculate inflorescences. In Stilpnolepis the capitula are, probably secondarily, solitary or laxly corymbose.

Fig. 7 Cladogram (of 71 possible) of the Artemisiinae produced by the $b b$ option in Hennig86. Cladogram length $=48$, consistency index $=$ 79 , retention index $=82$.

Table 15 Data matrix for the Artemisiinae. $1=$ presence, $0=$ absence, ? $=$ missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

36 Capitula disciform. Stilpnolepis and Seriphidium have discoid capitula. Within this subtribe discoid capitula are most parsimoniously interpreted as derived from disciform, rather than from radiate capitula.

Ajania

There is no autapomorphy for this genus, which appears to be a paraphyletic grade when compared to Phaeostigma and the Artemisia group.

Clade Ar4

96 Pollen grains with short spines or without spines.

Phaeostigma

102 Style-branches brownish.
Clade Ar5 - the Artemisia group
154 Cypselas thin-walled, obovoid to oblanceolate, devoid of ribs. Faint ribs are sometimes present, most clearly seen in Crossostephium and sometimes within Sphaeromeria.
Stilpnolepis

29 reversed. See clade Ar3.
35 Capitula discoid. See character 36 under clade Ar3.

Clade Ar6

65 Outer female floret corollas 'flask-shaped', tapering above or narrowly cylindrical.
97 Pollen grains without spines.

Ajaniopsis

1 Plants annual.

78 Corolla apically with erect, straight hairs.

Filifolium

143 Cypselas with myxogenic glands in 2 distinct adaxiallateral rows.

Clade Ar7

13 Plants with interxylary cork. Interxylary cork has been studied in Sphaeromeria, Seriphidium, Artemisia and Picrothamnus only.

Sphaeromeria

There is no obvious autapomorphy for this genus.
Clade Ar8
29 reversed. See clade Ar3.
31 Capitula in a long narrow panicle or raceme. See character 29 under clade Ar3.

Kaschgaria

12 Plants with stellate hairs.
80 Corolla apically with stellate hairs.

Seriphidium

35 Capitula discoid. See character 36 under clade Ar3.
38 Involucral bracts in 4-7 rows.
116 Disc cypselas laterally flattened.

Crossostephium

2 Plants shrubby. See note under Brachanthemum.
22 Leaves entire or apically tridentate.
154 reversed. See clade Ar5.
172 reversed. See clade Ar1.
Clade Ar9
99 Style slender, parallel-sided at base.

Artemisia

There is no autapomorphy for Artemisia when compared to the remaining four genera.

Neopallasia

1 Plants annual.
17 Leaves pectinate-pinnatisect with filiform, apically somewhat swollen and mucronulate lobes.

66 Outer female floret corollas without teeth.
91 Central florets of two kinds; outer perfect, inner completely sterile with reduced ovaries.

Turaniphytum

32 Capitula in glomerules arranged in long spikes.
64 Outer female florets subtended by scaphoid bracts.
79 Corolla apically with long, reddish hairs.
Clade Ar10
2 Plants shrubby. See note under Brachanthemum.
104 Disc floret style-branches fused. This is characteristic also of Artemisia sect. Dracunculus.

106 Central floret ovaries reduced; florets functionally male.
148 Cypselas cobwebby pilose.

Mausolea

67 Outer female florets without corollas.
68 Outer female floret style-branches lanceolate, flat, acute.

Picrothamnus

3 Plants spiny.
81 Corolla cobwebby pilose.
30. BRACHANTHEMUM DC., Prodr. 6: 44 (1838).
Type species: B. fruticulosum (Ledeb.) DC.

Small, more or less procumbent shrublets, woody at the base. Leaves alternate, few-lobed. Capitula solitary or laxly corymbose, pedunculate, radiate or rarely discoid. Receptacle flat or convex to conical, epaleate. Ray florets female, fertile; limb yellow or yellowish. Disc corolla 5-lobed; tube with sessile glands. Apical anther appendage subtriangular. Cypselas obovoid to oblong, faintly 5-7-ribbed, thin-walled, with myxogenic cells. Pappus absent.

Distribution. C. Asia, Mongolia and China (map by Krascheninnikov, 1949: 199). - 10 spp.

According to Krascheninnikov (1949) and Tzvelev (in Komarov, 1961) most species of Brachanthemum are closely related, although B. baranovii is different and placed in the monotypic sect. Dendranthemopsis. It differs from sect. Brachanthemum by its oblong rays and flat, shortly pilose receptacle, as opposed to the otherwise shorter rays and convex to conical, glabrous receptacle. On the other hand the characteristic shrubby habit, the few-lobed leaves, and the rather small, cyathiform to urceolate capitula may distinguish this genus as monophyletic. Tzvelev noted the close relationship to Dendranthema, emphasized also by the similar thinwalled, myxogenic fruits without a pappus (described in detail by Savczenko, 1949). The list of species is taken from Krascheninnikov's (1949) revision and Flora URSS (Komarov, 1961) with species from China and Mongolia added.
*B. baranovii (H. Kraschen. \& Polj.) H. Kraschen.
B. fruticulosum (Ledeb.) DC.
B. gobicum H. Kraschen.
B. kasakhorum H. Kraschen.
B. kirghisorum H. Kraschen.
*B. krylovii Serg.
B. mongolicum H. Kraschen.
*B. mongolorum Grubov
B. pulvinatum (Hand.-Mazz.) Shih (B. nanshanicum H. Kraschen.)
B. titovii H. Kraschen.
31. DENDRANTHEMA (DC.) Des Moul. in Act. Soc. linn. Bordeaux 20: 561 (1860). Type species: D. indicum (L.) Des Moul. - Pyrethrum sect. Dendranthema DC.

Perennial herbs or half-shrubs. Leaves alternate, pinnatisect, lobed, serrate or rarely entire. Capitula laxly corymbose or solitary, radiate. Involucral bracts generally with dark brown margins. Receptacle convex to conical, epaleate. Ray florets female, fertile; limb white, pink, or yellowish. Disc corolla 5-lobed; tube generally with sessile glands. Apical anther appendage subtriangular. Cypselas obovoid, faintly 5-8ribbed, thin-walled, generally with myxogenic cells in rows. Pappus absent.

Distribution. Asia, mainly in China and Japan, one species extending to E. Europe (D. zawadskii). - 37 spp.

Dendranthema differs from Tanacetum (i.e. Chrysanthemum
s. 1.) by its obovoid, thin-walled, generally myxogenic cypselas without a pappus. It was revised by Tzvelev (in Komarov, 1961). Later Tzvelev (1985) transferred three species of Dendranthema to a new genus Arctanthemum and later erected the new genus Hulteniella based on Arctanthemum integrifolium (Richardson) Tzvelev (Tzvelev, 1987). Other related genera are Brachanthemum and Tridactylina.

There is still much work to be undertaken on this speciesrich and horticulturally interesting genus. There are many, poorly understood species, known only from the original description, and probably several undescribed ones. Possibly there are other species to be transferred from Tanacetum. Future revision should be undertaken with Ajania, since some species of Dendranthema may be more closely related to Ajania than to other species within Dendranthema. In other words, Dendranthema may be paraphyletic when Ajania and its relatives (i.e. Artemisia etc.) are excluded. As presently understood, Dendranthema is always radiate and Ajania always disciform. Most species of Dendranthema also have involucral bracts with dark brown margins, a character that may have been secondarily lost in the small-headed species of Ajania.

The well-known autumn-flowering chrysanthemums of horticulture are derived from D. grandiflorum and D. indicum.

The list of species is compiled mainly from Flora URSS (Komarov, 1961) and the Flora of the People's Republic of China (Ling \& Shih, 1980, 1983; Shih \& Fu, 1983), as well as from accounts from Japan by Kitamura (1940, 1978, 1979). These authors transferred a number of species from Chrysanthemum to Dendranthema. Kitamura also included four disciform species, D. pallasianum, D. rupestre, D. pacificum, and D. shiwogiku, in section Ajania. The latter we consider as a separate genus in agreement with various other authors and so the disciform species are here listed under Ajania. The generic distinction, as discussed under that genus, is in doubt but pending a detailed study of both genera we consider it best to transfer a few disciform Japanese Dendranthema species to Ajania rather than to recombine the numerous Chinese Ajania species under Dendranthema.
${ }^{*}$ D. aphrodite (Kitam.) Kitam. Japan.
${ }^{*}$ D. argyrophyllum (Ling) Ling \& Shih. China.
D. arisanense (Hayata) Ling \& Shih. Taiwan.
D. boreale (Makino) Ling ex Kitam. China, Korea, Japan.
D. chalchingolicum (Grubov) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum chalchingolicum Grubov in Bot. Zhurn. 15: 1592 (1972). Mongolia.
D. chanetii (A. Léveillé) Shih (D. erubescens (Stapf) Tzvelev). China, Korea.
D. coreanum (A. Léveillé \& Vaniot) Vorosch. Korea.
*D. crassum (Kitam.) Kitam. Japan.
D. cuneifolium (Kitam.) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum cuneifolium Kitam. in Acta phytotax. geobot. Kyoto 7: 68 (1938). Japan.
${ }^{*}$ D. dichrum Shih. China.
${ }^{*}$ D. glabriusculum (W. Smith) Shih. China.
D. grandiflorum (Ramat.) Kitam. (D. morifolium (Ramat.) Tzvelev). China, much cultivated.
D. hypargyrum (Diels) Ling \& Shih. China.
D. indicum (L.) Des Moul. China, Korea, Japan, much cultivated.
D. japonense (Nakai) Kitam. Japan.
D. japonicum (Makino) Kitam. Japan.
D. lavandulifolium (Fischer ex Trautv.) Kitam. China.
*D. littorale (Mackawa) Tzvelev. Far East, Japan.
D. maximowiczii (V. Komarov) Tzvelev. Far East, China, Korea.
D. miyatojimense (Kitam.) Hind. Japan.
D. mongolicum (Ling) Tzvelev. E. Siberia, China.
*D. morii (Hayata) Kitam. Taiwan.
D. nankingense (Hand.-Mazz.) Y. R. Ling. China.
*D. okiense (Kitam.) Kitam. Japan.
D. oreastrum (Hance) Ling (D. sichotense Tzvelev). Far East, China, Korea.
D. ornatum (Hemsley) Kitam. Japan.
*D. parvifolium (Chang) Shih. China.
D. potentilloides (Hand.-Mazz.) Shih. China.

* D. rhombifolium Ling \& Shih. China.
*D. sinchangense (Ueki) Kitam. Korea.
D. sinuatum (Ledeb.) Tzvelev. C. Asia, Mongolia.
*D. vestitum (Hemsley) Ling. China.
*D. weyrichii (Maxim.) Tzvelev. Far East, Japan.
*D. xeromorphum Khokr. Russia.
D. yezoense (T. Maek.) Hind. Japan.
D. yoshinaganthum (Makino ex Kitam.) Kitam. Japan.
D. zawadskii (Herbich) Tzvelev (D. naktongense (Nakai) Tzvelev). From E. Europe through Russia to China, Mongolia, and Japan.

32. ARCTANTHEMUM (Tzvelev) Tzvelev in Nov.

Sist. Vysshikh Rast. 22: 274 (1985). Type species: A. arcticum (L.) Tzvelev (including Hulteniella Tzvelev).

Perennial rhizomatous herbs. Leaves rosulate to alternate, obovate-spathulate to linear, apically lobed-serrate or entire. Capitula solitary, radiate. Involucral bracts with dark brown margins. Receptacle convex to conical, epaleate. Ray florets female, fertile; limb white. Disc corolla 5-lobed; tube generally with sessile glands. Apical anther appendage subtriangular. Cypselas oblong, somewhat 5-8-ribbed, without myxogenic cells. Pappus absent.

Distribution. Arctic Eurasia, Siberia, Far East, Japan, Arctic N. America. - 4 spp.

Arctanthemum was formerly a section of Dendranthema. It consists of more or less rosulate herbs with an arctic distribution, whereas most Dendranthema species are leafy herbs or herbaceous perennials from China and Japan. It is worth noting that Tzvelev (1987) transferred A. integrifolium to a new genus, Hulteniella Tzvelev, which we do not recognize here.
A. arcticum (L.) Tzvelev (Dendranthema arcticum (L.) Tzvelev). Far East and Arctic America.
A. hultenii (A. \& D. Löve) Tzvelev (Dendranthema hultenii (A. \& D. Löve) Tzvelev). Arctic Eurasia and Arctic America.
A. integrifolium (Richardson) Tzvelev (Dendranthema integrifolium (Richardson) Tzvelev, Hulteniella integrifolium (Richardson) Tzvelev). NE Siberia and Arctic N. America. A. kurilense (Tzvelev) Tzvelev (Dendranthema kurilense (Tzvelev) Tzvelev). Far East, Japan.
33. TRIDACTYLINA (DC.) Schultz-Bip. in Webb \& Berthelot, Hist. nat. Iles Canaries 3 (2,2): 245 (1844). Type species: T. kirilowii (Turcz. ex DC.) Schultz-Bip.
An annual herb. Leaves alternate, few-lobed. Capitula laxly corymbose, radiate. Involucral bracts with dark brown margins. Receptacle flat to convex, epaleate. Ray florets neuter; limb yellow. Disc corolla 5-lobed. Apical anther appendage subtriangular. Cypselas 5-ribbed, with myxogenic cells and with an apical rim. Pappus absent.

Distribution. E. Siberia. - Monotypic.
According to Tzvelev in Flora URSS (Komarov, 1961) this species is clearly related to Dendranthema but differs by its annual habit and neutral rays. It is similar for example in foliage to some species of Dendranthema and Arctanthemum.
34. AJANIA Polj. in Bot. Mater. Gerb. bot. Inst. V. A. Komarova 17: 419 (1955). Type species: A. pallasiana (Fischer ex Besser) Polj.
Perennial herbs or half-shrubs. Leaves alternate, pinnatisect, lobed, serrate, or rarely entire. Capitula small, corymbose or rarely solitary, disciform. Receptacle convex to conical, epaleate. Outer female florets in one row. Corollas of central florets 5 -lobed; tube generally with sessile glands. Apical anther appendage subtriangular. Cypselas obovoid, faintly 4-6-ribbed, thin-walled, generally with myxogenic cells in rows. Pappus absent.

Distribution. C. Asia, mainly in China, also in Japan. - 34 spp.
Poljakov removed a number of species from Artemisia to a separate genus Ajania. He noted that Ajania has fertile florets and the common form of distinct 5-lobed corollas with spreading lobes, whereas in Artemisia only some of the florets in each capitulum are fertile, producing mature fruits, and the corollas have small erect lobes. Ajania also has a corymbose inflorescence as opposed to the elongated inflorescences of Artemisia. Poljakov speculated that Ajania is a very old group derived from the same ancestors as Artemisia.

Tzvelev (in Komarov, 1961) accepted Ajania although he retained some of Poljakov's Ajania species in Artemisia. He also noted the close affinity between Dendranthema and Ajania, and speculated that Ajania and Artemisia are two convergent and habitually similar lines independently evolved from the same 'dendranthemoid' ancestors. More parsimoniously, Ajania may be considered the plesiomorphic sister group to Artemisia and all its relatives. Possibly Ajania or part of the genus is the sister group of Artemisia and the other genera with smooth or short-spined pollen, as indicated in the cladogram. Dendranthema is even more plesiomorphic and possibly paraphyletic with Ajania, and Artemisia etc. excluded. Ajania differs from Dendranthema by its smaller, disciform, densely corymbose capitula. No doubt this speciesrich and little-known genus deserves a detailed study together with Dendranthema.

A few species of Ajania have recently been placed in a separate genus, Phaeostigma. There may be several species of Ajania (Muldashev, 1982, 1983) that should be transferred to Phaeostigma, should the latter be kept distinct. The type species of Ajania, A. pallasiana, and A. latifolia, A. rupestris, and A. shiwogiku are all examples of species similar to

Phaeostigma. The matter is discussed further under Phaeostigma.

Tzvelev suspected that the distinction between Ajania and Dendranthema would become difficult after examination of the extensive Chinese material. Nevertheless Ling \& Shih (1980, 1983) kept them separate in their accounts of the Chinese species. Our list of species is compiled mainly from their treatments and from Flora URSS (Komarov, 1961). The species from Tibet were listed by Shih \& Fu (1979) and the Japanese species are from Kitamuras's (1978) Dendranthema sect. Ajania (see discussion under Dendranthema).
A. achilleoides (Turcz.) Polj. ex Grubov. Mongolia.
A. adenantha (Diels) Ling \& Shih. China.
*A. brachyantha Shih. China.
A. breviloba (Franchet ex Hand.-Mazz.) Ling \& Shih. China. *A. elegantula (W. Smith) Shih. China.
A. fastigiata (Winkler) Polj. C. Asia, China.
A. fruticulosa (Ledeb.) Polj. (A. aureoglobosa (W. Smith \& Farrer) Muld.). C. Asia, E. Siberia, Mongolia, China.
A. gracilis (Hook. f. \& Thomson) Polj. ex Tzvelev. C. Asia, China, Himalaya.
*A. grubovii Muld. Mongolia.
*A. junnanica Polj. China.
A. khartensis (Dunn) Shih (A. mutellina (Hand.-Mazz.) Muld.). China.
*A. kokanica (H. Kraschen.) Tzvelev. C. Asia.
A. latifolia Shih. China.
A. myriantha (Franchet) Ling ex Shih (A. oresbia (W. Smith) Muld.). China.
*A. nana (H. Kraschen.) Muld. China.
*A. nematoloba (Hand.-Mazz.) Ling \& Shih. China.
*A. nitida Shih. China.
A. nubigena (Wallich) Shih. China.
A. pacifica (Nakai) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum pacificum Nakai in Bot. Mag., Tokyo 42: 462 (1928) (Dendranthema pacificum (Nakai) Kitam.). Japan.
A. pallasiana (Fischer ex Besser) Polj. (Dendranthema pallasianum (Fischer ex Besser) Vorosch.). Far East, China, Korea, Japan.
A. parviflora (Grün.) Ling. China.
A. potaninii (H. Kraschen.) Polj. China.
A. przewalskii Polj. China.
*A. purpurea Shih. China.
*A. remotipinna (Hand.-Mazz.) Ling \& Shih. China.
*A. roborowskii Muld. China.
A. rupestris (Matsum. ex Koidz.) Muld. Japan.
A. scharnhorstii (Regel \& Schmalh.) Tzvelev. C. Asia.
*A. sericea Shih. China.
A. shiwogiku (Kitam.) Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum shiwogiku Kitam. in Acta phytotax. geobot. Kyoto 4: 71 (1935). Japan.
A. tenuifolia (Jacquem.) Tzvelev. Himalaya.
A. tibetica (Hook. f. \& Thomson) Tzvelev. C. Asia, China, Himalaya.
${ }^{*}$ A. trilobata Polj. C. Asia.
*A. tripinnatisecta Ling \& Shih. China.
35. PHAEOSTIGMA Muld. in Bot. Zhurn. 66: 586 (1981). Type species: P. salicifolium (Mattf.) Muld.

Perennial herbs or half-shrubs. Leaves alternate, pinnatifid to shallowly lobed or entire. Capitula small, densely corymbose,
disciform. Receptacle convex, epaleate. Outer female florets in one row. Central floret corolla 5-lobed; lobes erect. Apical anther appendage subtriangular. Style-branches brownish. Cypselas 4-6-ribbed; ribs projected into minute teeth. Pappus absent.
Distribution. China. -3 spp .
Muldashev made a detailed comparison of Ajania fruticulosa and the three species of Ajania transferred by him to Phaeostigma. According to Muldashev Phaeostigma is distinguished by its brownish style-branches and erect corolla lobes. The latter character, as well as the suffruticose habit and the less spiny pollen, are characters similar to those of Artemisia. Muldashev stated that phylogenetically Phaeostigma is related to the ancestors of Ajania and distantly related to Artemisia, mainly on account of its pollen morphology.

The brownish style-branches is a difficult character to evaluate. Similar style-branches may be present in related genera. Although Shih \& Fu (1983) reduced Phaeostigma to synonomy under Ajania we have kept them distinct. In that case Phaeostigma may be another grade group between Ajania and Artemisia and its relatives. The actual circumscription of Phaeostigma will have to be assessed in a wider study of Ajania and especially those Ajania species that are similar in habit to Phaeostigma.
P. quercifolium (W. Smith) Muld. (Ajania quercifolia (W. Smith) Ling \& Shih)
P. salicifolium (Mattf.) Muld. (Ajania salicifolia (Mattf.) Polj.)
P. variifolium (Chang) Muld. (Ajania manshurica Polj., Ajania ramosa (Chang) Shih, Ajania variifolia (Chang) Tzvelev)
36. STILPNOLEPIS H. Kraschen. in Nov. Sist. Vysshikh Rast. 2: 207 (1946). Type species: S. centiflora (Maxim.) H. Kraschen. - Elachanthemum Ling \& Y. R. Ling.

Annual or perennial herbs. Leaves opposite or alternate, pinnatisect, few-lobed or entire. Capitula laxly corymbose, discoid. Involucral bracts widely obovate and largely scarious. Receptacle convex-subconical, epaleate. Corolla 5-lobed, with a distinct tube and more or less crateriform limb, glandular. Apical anther appendage acuminatetriangular. Cypselas obliquely obovoid to narrowly obovoidoblanceolate, thin-walled, without ribs, densely glandular. Pappus absent.

Distribution. Mongolia and China. -2 spp .

According to Krascheninnikov (1946) S. centiflora resembles Artemisia, but does not share the obovoid cypselas, the slender corollas, the acuminate anther appendages and the paniculate inflorescence of Artemisia and closely related genera. Though elongated, the cypselas are basically the same as in other genera of subtribe Artemisiinae; obovoid (oblanceolate), thin-walled and devoid of ribs. There is no doubt about the subtribal position of Stilpnolepis.

According to Ling \& Y. R. Ling (1978) the second species, S. intricata, formerly classified in Artemisia or Seriphidium, should be separated from those genera because of the long peduncles and the laxly corymbose inflorescence, the centrally abortive disc florets, and the multicostate appearance of the rows of myxogenic cells on the cypselas. Hence they
created a new genus Elachanthemum for this species. However, Ling and Y. R. Ling did not consider a possible relationship with Stilpnolepis. Recently Shih (1985) argued that Elachanthemum intricatum is closely related to Stilpnolepis centiflora and his treatment is followed here. Both species have discoid and laxly corymbose capitula, most parsimoniously interpreted as apomorphic within the Artemisia group, and hence synapomorphies uniting the two species.
S. centiflora (Maxim.) H. Kraschen.
S. intricata (Franchet) Shih (Elachanthemum intricatum (Franchet) Ling \& Y. R. Ling

37. AJANIOPSIS Shih in Acta phytotax. sin. 16: 86 (1978). Type species: A. penicilliformis Shih.

A pubescent annual herb. Leaves alternate, pinnatisect and few-lobed. Capitula rather small, few together in dense corymbs, disciform. Receptacle convex, epaleate. Outer female florets in one row, tapering above, apically densely pilose with erect, straight hairs. Central floret corolla 5-lobed, apically densely pilose with erect, straight hairs. Apical anther appendage subtriangular. Cypselas obovoid, thin-walled with 3-6 rows of myxogenic cells. Pappus absent.
Distribution. China, Tibet. - Monotypic.
This is a distinctive species and undoubtedly a member of Artemisiinae, though its immediate relatives are difficult to indicate. Shih (1978) compared it to both Ajania and Artemisia. It is distinguished by its annual habit, the densely corymbose capitula and apically pilose corollas. The genus differs from Ajania only by the corollas being pilose at the apex. The cypsela ribs, described and illustrated by Shih, appear to be rows of myxogenic cells. We have only examined the holotype and avoided consuming type material for a detailed cypsela investigation.
38. FILIFOLIUM Kitam. in Acta phytotax. geobot. Kyoto 9: 157 (1940). Type species: F. sibiricum (L.) Kitam.

A perennial herb, basally somewhat woody and covered with fibrous leaf sheaths. Leaves alternate, pinnatisect with long filiform lobes. Capitula rather small, corymbose, disciform. Receptacle conical, epaleate. Outer female florets tapering above, minutely 4-dentate. Central florets apparently hermaphrodite but functionally male and female-sterile; corollas compressed together in a resinous mass, 5-lobed. Apical anther appendage triangular. Cypselas obliquely obovoid, thin-walled, with 2 adaxial-lateral rows of myxogenic cells. Pappus absent.

Distribution. Far East, China and Korea. - Monotypic.
Filifolium was earlier included in Artemisia sect. Dracunculus on account of the female-sterile disc florets. However, the inflorescence is corymbose, the style is distinctly divided and the apical appendages of the anthers are triangular, not linear-lanceolate. In habit Filifolium is more similar to some species of Ajania than to Artemisia. In pollen and cypsela characters Filifolium is apomorphic compared to Ajania. Hence, it occupies an intermediate position within the subtribe, as expressed in the cladogram. The obliquely obovoid cypselas with two distinct rows of myxogenic cells appear to be autapomorphic for this genus.

39. SPHAEROMERIA Nutt. in Trans. Am. phil. Soc. 2 (7): 401 (1841). Type species: S. capitata Nutt. Chamartemisia Rydb. - Vesicarpa Rydb.

Perennial herbs or half-shrubs, sometimes rather compact and basally woody. Leaves alternate to rosulate, pinnatisect and few-lobed or entire. Capitula apparently corymbose but sometimes somewhat paniculate or capitate or solitary, disciform. Receptacle flat to conical, epaleate, rarely pubescent. Outer female florets tapering above, sometimes glandular, rarely with dolabriform hairs at the apex. Central florets with corolla 5-lobed, sometimes glandular, rarely with dolabriform hairs at the apex. Apical anther appendage subtriangular. Cypselas obovoid-oblong, sometimes faintly ribbed, sometimes with myxogenic cells, often with an apical rim. Pappus usually absent or rarely minutely coroniform, with small scales.

Distribution. Western N. America in California, Colorado, Montana, Nevada, Oregon, Utah and Wyoming, and in Mexico. - 9 spp.

Sphaeromeria was originally proposed by Nuttall to circumscribe S. capitata and S. argentea. Torrey \& Gray (1843) reduced Sphaeromeria to a section of Tanacetum simply on combination of three plesiomorphic characters, the yellow 5-lobed corollas, the woody base and the alternate leaves. Rydberg (1916) returned Sphaeromeria to its generic status and erected two new genera, Vesicarpa to include Artemisia potentilloides A. Gray with a hairy receptacle and Chamartemisia for Tanacetum compactum Hall with pappose cypselas.
A. Holmgren et al. (1976) presented a detailed study of the three genera Sphaeromeria, Vesicarpa and Chamartemisia, and concluded that they are more closely related to one another than to any other group. Sphaeromeria appears to be more closely related to Artemisia than Tanacetum. However, of the 12 characters discussed by A. Holmgren et al. not one is autapomorphic for Sphaeromeria. They are present in all other genera of Artemisiinae. The presence of a small coroniform pappus in one species is an unusual feature within Artemisiinae but a parallel case is Crossostephium.

Sphaeromeria is similar in habit to Kaschgaria. The inflorescences of Sphaeromeria are variable and the transformations within the genus are difficult to assess. In the cladogram the corymbose condition is considered plesiomorphic but there are species with slightly elongated inflorescences resembling those of Kaschgaria. The two genera are possibly closely related.

The list of species is taken from A. Holmgren et al., who also provided a key.
S. argentea Nutt.
S. cana (D. C. Eaton) A. A. Heller
S. capitata Nutt.
S. compacta (H. M. Hall) A. Holmgren, Shultz \& Lowrey (Chamartemisia compacta (H. M. Hall) Rydb.)
S. diversifolia (D. C. Eaton) Rydb.
*S. martirensis (Wiggins) A. Holmgren, Shultz \& Lowrey
S. potentilloides (A. Gray) A. A. Heller (Vesicarpa potentilloides (A. Gray) Rydb.)
S. ruthiae A. Holmgren, Shultz \& Lowrey
S. simplex (Nelson) A. A. Heller

40. KASCHGARIA Polj. in Bot. Mater. Gerb. bot. Inst. V. A. Komarova 18: 282 (1957). Type species: K. brachanthemoides (Winkler) Polj.

Rather woody half-shrubs; indumentum of stellate hairs. Leaves alternate, entire or few-lobed. Capitula rather small and few in an elongated panicle, at the summit fasciculate, disciform. Receptacle conical, epaleate. Outer female florets few, tapering above. Central floret corolla apically with stellate hairs, 5-lobed. Apical anther appendage linearlanceolate. Cypselas obovoid, thin-walled. Pappus absent.

Distribution. C. Asia and China. - 2 spp.
Poljakov removed the two species of Kaschgaria from Artemisia mainly because of their stellate corolla hairs. He also stated that Kaschgaria is closer to Seriphidium than to Artemisia s. s., but Kaschgaria differs from Seriphidium, for example, by its disciform (heterogamous) versus a discoid (homogamous) capitulum. The possible relationship to Sphaeromeria (then part of Tanacetum) was not mentioned by Poljakov, who probably did not consider the North American species of Tanacetum. He closed his discussion noting that the systematic position of Kaschgaria could not be settled before the whole Asian part of the Artemisia group had been properly considered. We agree that Kaschgaria is a distinct genus probably related to Seriphidium, or possibly more closely to Sphaeromeria, although there is no obvious synapomorphy uniting the two genera.
K. brachanthemoides (Winkler) Polj.
K. komarovii (H. Kraschen \& N. Rubtzov) Polj.
41. SERIPHIDIUM (Besser ex Hook.) Fourr. in Annls. Soc. linn. Lyon. II, 17: 89 (1869) Type species: S. maritimum (L.) Polj. - Artemisia sect. Seriphidium Besser - Artemisiastrum Rydb.

Perennial herbs, half-shrubs or annual herbs. Leaves alternate, pinnatisect. Capitula small and few-flowered, oblong, numerous in a long panicle, discoid. Involucral bracts in 4-7 rows, unequal; the outer short and rounded, the inner gradually longer and linear. Receptacle small, conical, epaleate or occasionally paleate. Corolla 5-lobed, tubular, yellow to purple. Apical anther appendage linear-lanceolate. Cypselas small, obovoid to ellipsoid, somewhat flattened or triquetrous, thin-walled. Pappus absent.

Distribution. From Europe throughout temperate Asia to N. America (5 spp.), though mainly in central Asia. - 134 spp.
Seriphidium, established as a genus by Poljakov (1961), is almost always considered a section or subgenus of Artemisia (e.g. Ward, 1940). We agree with Poljakov (1961), Leonova (1970) and Filatova (1981, 1982a, b 1984) that it should be kept distinct. Seriphidium differs in a number of characters, representing synapomorphies. Furthermore, its sister group appears to be found outside Artemisia s. s., and Seriphidium cannot be considered a specialized segregate of Artemisia. Seriphidium is most closely related either to a larger group of genera including Artemisia or some other genus (or genera), e.g. Kaschgaria, within the Artemisiinae. The genus is characterized by its discoid, homogamous capitula, not disciform and heterogamous as in Artemisia. The most parsimonious interpretation for this character is to assume that the outer
female florets present in related genera have been lost. This was originally suggested by Krascheninnikov (1946)*although hotly contested by Poljakov (1961). It must be noted that this character breaks down in S. bigelowii. This species is usually included in Artemisia section Abrotanum because there are at least some capitula within inflorescences that have one or two female outer florets. However, on the basis of involucral (many-rowed bracts) and anther (slender apical appendages) characters S. bigelowii is certainly a member of Seriphidium. It is also virtually identical to the American S. tridentatum, which is homogamous and always included in Seriphidium (see Weber, 1984). Heterogamy in S. bigelowii is plesiomorphic or a secondary reversal from the homogamous condition, which then can be interpreted as a synapomorphy for the genus.

The corollas of Seriphidium are tubular and the teeth usually infolded for much of anthesis. During anthesis the short flat lobes of the style are often still together and enclosed in the anther tube, a feature mostly associated with cleistogamy. Mature cypselas are hard to find and there are many occasions when only one will mature in a head of 3-10 florets.

The apical anther appendages of Seriphidium are very slender, narrowly lanceolate to linear and notably different from those of Artemisia and related genera. The involucre is specialized with 4-7 rows of overlapping bracts, as compared to the $2-4$-rowed involucre of related genera.

The monotypic Artemisiastrum (A. palmeri $=S$. palmeri) was separated by Rydberg (1916) on the presence of receptacular scales. Parallel cases are legion in the Anthemideae and in Asteraceae as a whole. Here the presence of paleae is best considered a gain character, a feature also noted by Hall \& Clements (1923). In all characters S. palmeri is virtually identical to other taxa within Seriphidium.
The list of species has been compiled from the standard floras, cf. under Artemisia, and by original research with Y. R. Ling (1991a, b) during his sabbatical year at The Natural History Museum, London. Except for cases of basionyms, synonymous Artemisia names are not included when the same epithet is involved. Also, combinations from Artemisia by Bremer \& Humphries have been validly published in Ling (1991a).
S. algeriense (Filat.) Y. R. Ling. Algeria.
*S. amoenum (Polj.) Polj. C. Asia.
S. aralense (H. Kraschen.) Polj. SW C. Asia.
S. arbusculum (Nutt.) W. A. Weber. W. United States.
S. arenicolum (H. Kraschen. ex Polj.) Y. R. Ling. Afghanistan, Iran, C. Asia.
*S. argilosum (Beetle) Bremer \& Humphries, comb. nov. Basionym: Artemisia argilosa Beetle, Rhodora 61: 84 (1959). United States in Colorado.
*S. assurgens (Filat.) Bremer \& Humphries in Y. R. Ling. Russia.
*S. aucheri (Boiss.) Ling \& Y. R. Ling. Iran, Afghanistan, China.
S. badhysi (Krasch. \& Lincz. ex Polj.) Polj. C. Asia.
S. balchanorum (H. Kraschen.) Polj. SW C. Asia.
*S. baldshuanicum (H. Kraschen. \& Zaprj.) Polj. Afghanistan, C. Asia.
S. barrelieri (Besser) Soják. Spain, N. Africa.
S. bicolor (Rech. f. \& Wagenitz) Bremer \& Humphries, comb. nov. Basionym: Artemisia bicolor Rech. f. \& Wagenitz in Anz. öst. Akad. Wiss. Mathematische Natur-
wissenschaftliche Klasse., 98: 78 (1961). Afghanistan.
S. bigelowii (A. Gray) Bremer \& Humphries, comb. nov. Basionym: Artemisia bigelowii A. Gray in Torrey Pacific R. Rep. 4: 110 (1857). S. and W. United States.
${ }^{*}$ S. borotalense (Polj.) Ling \& Y. R. Ling. C. Asia, China.
S. botschantzevii (Filat.) Y. R. Ling. Russia.
*S. brevifolium (Wallich ex DC.) Ling \& Y. R. Ling. Afghanistan, Pakistan, India, China.
S. caerulescens (L.) Soják. S. Europe.
*S. camelorum (H. Kraschen.) Polj. C. Asia.
S. canum (Pursh) W. A. Weber. W. North America.
S. chitralense (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia chitralensis Podl., Fl. iranica 158: 198 (1986). Afghanistan, Pakistan.
${ }^{*}$ S. ciniforme (H. Kraschen. \& Popov ex Polj.) Polj. Iran, C. Asia.
S. cinum (P. Bergius ex Polj.) Polj. C. Asia, China.
S. compactum (Fischer ex DC.) Polj. C. Asia, S. Siberia, China in Sinkiang, Mongolia.
*S. cretaceum (Fiori) Bremer \& Humphries, comb. nov. Basionym: Artemisia caerulescens var. cretacea Fiori in Fiori \& Paoletti, Fl. Italia 3: 251 (1904). S. Europe in Italy.
S. densifolium (Filat.) Y. R. Ling. Algeria
S. deserti (H. Kraschen.) Polj. Afghanistan, Iran, SW C. Asia.
S. diffusum (H. Kraschen. ex Polj.) Y. R. Ling. Iran, Afghanistan, Pakistan.
*S. dubjanskyanum (H. Kraschen. ex Polj.) Polj. C. Asia.
S. dumosum (Polj.) Polj. C. Asia.
*S. dzevanovskyi (Leonova) Soják. Krym.
*S. elongatum (Filat. \& Ladyg.) Bremer \& Humphries in Y. R. Ling. C. Asia.
${ }^{*}$ S. eremophilum (H. Kraschen. \& Butkov ex Polj.) Bremer \& Humphries in Y. R. Ling. C. Asia.
S. federovii (Rzazade) Y. R. Ling. C. Asia.
*S. fedtschenkoanum (H. Kraschen.) Polj. C. Asia, China in Xinjiang.
*S. ferganense (H. Kraschen. ex Polj.) Polj. C. Asia.
${ }^{*} S$. finitum (Kitagawa) Ling \& Y. R. Ling. China.
S. fragrans (Willd.) Polj. Afghanistan, Caucasus, Iran, C. Asia.
S. freitagii (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia freitagii Podl., Fl. iranica 158: 193 (1986). Afghanistan.
*S. fulvellum (Filat. \& Ladyg.) Bremer \& Humphries in Y. R. Ling. C. Asia.
S. ghazniense (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia ghazniensis Podl., Fl. iranica 158: 213 (1986). Afghanistan.
S. ghoratense (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia ghoratensis Podl., Fl. iranica 158: 197. Afghanistan.
*S. glanduligerum (H. Kraschen. ex Polj.) Polj. Afghanistan, Pakistan, C. Asia.
${ }^{*}$ S. glaucinum (H. Kraschen. ex Polj.) Bremer \& Humphries in Y. R. Ling. C. Asia.
S. gorjaevii (Polj.) Y. R. Ling. C. Asia.
S. gracilescens (H. Kraschen. \& Iljin) Polj. C. Asia, S. Siberia, Mongolia, China.
S. grenardii (Franchet) Y. R. Ling \& Humphries. China.
${ }^{*} S$. gurganicum (H. Kraschen.) Bremer \& Humphries in Y. R. Ling. C. Asia.
${ }^{*}$ S. gypsaceum (H. Kraschen., Popov \& Lincz. ex Polj.) Polj. Iran, SW \& C. Asia.
*S. halophilum (H. Kraschen.) Polj. C. Asia.
*S. heptapotamicum (Polj.) Ling \& Y. R. Ling. C. Asia, China.
S. herba-album (Asso) Soják. SW Europe, Turkey, Middle East, Iran, Himalayas.
S. incultum (Del.) Y. R. Ling. Egypt.
S. issykkulense (Polj.) Polj. C. Asia, China.
S. junceum (Karelin \& Kir.) Polj. C. Asia, China in Xinjiang.
S. kandaharense (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia kandaharensis Podl., Fl. iranica 158: 217. Afghanistan.
*S. karatavicum (H. Kraschen. \& Abolin ex Polj.) Ling \& Y. R. Ling. C. Asia, China.
*S. kasakorum (H. Kraschen.) Bremer \& Humphries, comb. nov. Basionym: Artemisia maritima ssp. kasakorum H. Kraschen., Otch. Rab. Pochv.-Bot. Otr. Kazakhst. Exped. Akad. Nauk SSSR 4(2): 272 (1930). C. Asia.
${ }^{*} S$. kaschgaricum (H. Kraschen.) Polj. C. Asia, China in Xinjiang.
*S. kemrudicum (H. Kraschen.) Polj. SW \& C. Asia.
S. kermanense (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia kermanensis Podl., Fl. iranica 158: 206 (1986). Iran.
*S. khorassanicum (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia khorassanica Podl., Fl. iranica 158: 210 (1986). Iran, Afghanistan.
*S. knorringianum (H. Kraschen.) Polj. C. Asia.
*S. kochiiforme (H. Kraschen. \& Lincz. ex Polj.) Polj. Afghanistan, C. Asia.
*S. kopetdaghense (H. Kraschen. ex Polj.) Polj. Afghanistan, Iran, Afghanistan, SW C. Asia.
S. korovinii (Polj.) Polj. Afghanistan, C. Asia.
S. korshinskyi (H. Kraschen. ex Polj.) Y. R. Ling. Afghanistan.
S. kurramense (Qaz.) Y. R. Ling. Afghanistan, Pakistan.
*S. lehmannianum (Bunge) Polj. Afghanistan, C. Asia.
S. lerchianum (G. Weber in Stechm.) Polj. From SE Europe in Bulgaria through Russia and C. Asia to S. Siberia.
S. lessingianum (Besser) Polj. SE Russia, C. Asia, S. Siberia.
S. leucodes (Schrenk) Polj. C. Asia.
S. leucotrichum (H. Kraschen. ex Polj.) Bremer \& Humphries in Y. R. Ling. Afghanistan, Pakistan, C. Asia.
*S. longilobum (Osterh.) Bremer \& Humphries, comb. nov. Basionym: Artemisia spiciformis var. longiloba Osterh. in Muhlenbergia 4: 69 (1908). N. America.
S. maritimum (L.) Polj. W., N. and E. Europe, Iran, C. Asia and the Himalayas.
S. mendozanum (DC.) Bremer \& Humphries, comb. nov. Basionym: Artemisia mendozana DC., Prodr. 6: 105 (1837). W. North America.
*S. minchunense Ling \& Y. R. Ling. China.
S. mogoltavicum (Polj.) Y. R. Ling. C. Asia.
*S. mongolorum (H. Kraschen.) Ling \& Y. R. Ling. China in Mongolia.
S. mucronulatum (Polj.) Y. R. Ling. C. Asia.
${ }^{*} S$. namanganicum (Polj.) Polj. C. Asia.
*S. nigricans (Filat. \& Ladyg.) Bremer \& Humphries in Y. R. Ling. C. Asia.
*S. nitrosum (G. Weber ex Stechm.) Polj. SE Russia, C. Asia, S. Siberia, China in Xinjiang.
${ }^{*} S$. novum (Nelson) W. A. Weber. W. United States.
S. nutans (Willd.) Soják. SE Russia.
*S. oliverianum (Gay ex Besser) Bremer \& Humphries in Y. R. Ling. Iran, Afghanistan, Pakistan, C. Asia.
S. oranense (Deb. ex Filat.) Y. R. Ling. NW Africa (Algeria).
S. oratense (Deb. \& Filat.) Y. R. Ling. Algeria.
S. palmeri (A. Gray) Bremer \& Humphries, comb. nov. Basionym: Artemisia palmeri A. Gray in Proc. Am. Acad. 11: 79 (1876) (Artemisiastrum palmeri (A. Gray) Rydb.). N. America in California and Baja California (Mexico).
S. pauciflorum (G. Weber in Stechm.) Polj. SE Russia, C. Asia, S. Siberia.
S. poljakovii (Filat.) Y. R. Ling. Russia.
S. polystichum (Polj.) Y. R. Ling. C. Asia.
S. porrectum (H. Kraschen. ex Polj.) Polj. C. Asia.
*S. prasinum (H. Kraschen. ex Polj.) Polj. Afghanistan, C. Asia.
*S. prolixum (H. Kraschen. ex Polj.) Polj. C. Asia.
*S. pygmaeum (A. Gray) W. A. Weber. W. United States.
*S. quettense (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia quettensis Podl., Fl. iranica 158: 212 (1986). Iran, Pakistan.
S. rhodanthum (Rupr.) Polj. C. Asia.
*S. rigidum (Nutt.) W. A. Weber. W. United States.
S. rothrockii (A. Gray) W. A. Weber. W. United States.
S. saharum (Pomel) Y. R. Ling. Algeria, Tunisia.
${ }^{*}$ S. saissanicum (H. Kraschen.) Bremer \& Humphries in Y. R. Ling. C. Asia.
S. santolinum (Schrenk) Polj. (S. lobulifolium (Boiss.) Polj.). Iran, C. Asia.
S. santonicum (L.) Soják (S. monogynum (Waldst. \& Kit.) Polj.). SE and E. Europe to C. Asia, Turkey.
S. sawanense Y. R. Ling \& Humphries. China.
S. schrenkianum (Ledeb.) Polj. C. Asia, S. Siberia, China in Xinjiang, Mongolia.
*S. scopiforme (Ledeb.) Polj. C. Asia, S. Siberia.
*S. scotinum (Nevski) Polj. Afghanistan, C. Asia.
*S. semiaridum (H. Kraschen. \& Lavrenko) Ling \& Y. R. Ling. C. Asia.
S. serotinum (Bunge) Polj. C. Asia.
*S. sieberi (Besser) Bremer \& Humphries in Y. R. Ling. Middle East, Iraq, Iran, Afghanistan, SW C. Asia.
S. skorniakowii (Winkler) Bremer \& Humphries in Y. R. Ling. C. Asia.
*S. spicigerum (Koch) Polj. Turkey, Caucasus, Iran.
*S. stenocephalum (H. Kraschen. ex Polj.) Polj. Afghanistan, Pakistan, C. Asia.
*S. subchrysolepis (Filat.) Bremer \& Humphries, comb. nov. Basionym: Artemisia subchrysolepis Filat. in Nov. Sist. Vysshikh Rast. 18: 224 (1981). C. Asia.
S. sublessingianum (Kell.) Polj. C. Asia, S. Siberia, Mongolia.
*S. subsalsum (Filat.) Bremer \& Humphries in Y. R. Ling. C. Asia.
S. szowitzianum (Besser) Polj. Caucasus.
*S. tauricum (Willd.) Polj. Krym, Caucasus, Turkey.
*S. tecti-mundii (Podl.) Bremer \& Humphries, comb. nov. Basionym: Artemisia tecti-mundii Podl., Fl. iranica 158: 206 (1986). Afghanistan, Pakistan.
S. tenuisectum (Nevski) Polj. C. Asia.
S. terrae-albae (H. Kraschen.) Polj. C. Asia, Mongolia, China.
*S. thomsonianum (C. B. Clarke) Ling \& Y. R. Ling. China.
S. tianshanicum (H. Kraschen.) Y. R. Ling. C. Asia, China in Xinjiang, Mongolia.
S. transiliense (Polj.) Polj. C. Asia.
S. tridentatum (Nutt.) W. A. Weber. W. North America.
S. tripartitum (Rydb.) W. A. Weber. W. United States.
${ }^{*} S$. turanicum (H. Kraschen.) Polj. Afghanistan, Iran, Pakistan, C. Asia.
*S. turcomanicum (Gand.) Polj. Iran, SW \& C. Asia.
*S. vachanicum (H. Kraschen. ex Polj.) Polj. Afghanistan, Pakistan, C. Asia.
*S. validum (H. Kraschen. ex Polj.) Polj. C. Asia.
S. valesianum (Lam.) Y. R. Ling. C. Europe.
S. vallesiacum (All.) Soják. S. Europe.
*S. vaseyanum (Rydb.) W. A. Weber. W. United States.
42. CROSSOSTEPHIUM Less. in Linnaea 6: 220 (1831). Type species: C. artemisioides Less. (C. chinense (L.) Makino).
A tomentose shrub. Leaves alternate, narrowly spathulate, apically few-lobed or entire. Capitula rather small and rounded, paniculate, disciform. Outer involucral bracts tomentose, inner scarious. Receptacle hemispherical, epaleate. Outer female florets tubular, 2-3-lobed, glandular. Central florets with corolla tubular, 5-lobed, glandular. Apical anther appendage subtriangular. Cypselas obovoid, weakly 5 -ribbed, glandular. Pappus coroniform, of small scales.

Distribution. The Philippines, Taiwan, S. Japan, and China, where it is also widely cultivated. - Monotypic.
Crossostephium chinense is a former species of Artemisia of uncertain systematic position. The rounded capitula with their pubescent outer involucral bracts recall many species of Artemisia. It appears from inflorescence, floret and pollen structure that it is related to the Artemisia group of genera. It differs by its weakly ribbed cypselas, furnished with a distinct coroniform pappus. On the basis of these characters a possible relationship to the North American Artemisia californica has been suggested by Gray (1884) and Rydberg (1916). Rydberg even transferred some species of Artemisia and relatives of Crossostephium on the basis of ribbed cypselas being present. However, no pappus is present and the presumed relationship was questioned by Hall \& Clements (1923).
43. ARTEMISIA L., Sp. pl.: 845 (1753). Type species: A. vulgaris L. - Oligosporus Cass. (including Artemisiella A. Ghafoor)
Annual and perennial herbs, half-shrubs or shrubs. Leaves alternate, variously lobed or dissected, rarely entire. Capitula disciform; inflorescence usually a long panicle but sometimes much reduced and racemose, spiciform or subglobose. Receptacle flat to conical, epaleate, sometimes pilose. Outer female florets usually tapering above, with 2-4 teeth, or truncate, commonly oblique at orifice. Central florets hermaphrodite and fertile or female-sterile and functionally male; corolla 5-lobed, yellow or sometimes purplish. Apical anther appendage lanceolate-linear to subulate. Cypselas obovoid, thin-walled, with or without rows of myxogenic cells, usually glabrous but occasionally hairy. Pappus absent.
Distribution. Predominantly N. hemisphere but with a few species also from S. America, Africa S. of Sahara and the Hawaiian Islands. Most species in temperate Eurasia and W. N. America. - 388 spp.

Artemisia is the largest genus of the Anthemideae (see Krasheninnikov, 1946). Because there are so many species
different authors have made numerous attempts to divide it up in some way. Problems have arisen because two of the four commonly recognized sections appear not to be monophyletic and attempts to separate individual genera have been carried out for a variety of different reasons, in regional isolation, without an appraisal of either all of the characters or all of the taxa.

The division of Artemisia goes back to Tournefort (1700). He recognized three genera, Abrotanum, Absinthium, and Artemisia. These were based on gross morphological characters and general habit. They are not the same groups as those recognized today, although the names have been retained at sectional or subgeneric level. Linnaeus (1753) united Tournefort's three genera into one, establishing more or less the concept of Artemisia which has been recognized ever since. Cassini (1817) established a new genus, Oligosporus, to accommodate those species with functionally separate sexes, outer female florets and central, functionally male florets with fused style-branches and reduced, abortive ovaries. This genus corresponds with the present day section (or subgenus) Dracunculus. All of the remaining taxa were included in Artemisia, Absinthium not being recognized. The next important development was by Besser (1829). Although he never completed his monograph, his results were published by De Candolle (1837). Besser established three subdivisions which were expanded to four by de Candolle as follows:

Sect. Abrotanum (=Artemisia). Capitula heterogamous (disciform); outer florets female, fertile; central florets perfect, fertile; receptacle glabrous.
Sect. Absinthium. As Abrotanum but receptacle hairy.
Sect. Dracunculus. As Abrotanum but central florets femalesterile.
Sect. Seriphidium. Capitula homogamous (discoid); florets all perfect, fertile; receptacle glabrous.

This arrangement has more or less persisted ever since and most treatments have fused or separated the different groups. Grenier \& Godron (1850) amalgamated all four sections into one genus, Euartemisia, but Rouy (1903) by contrast raised three sections, Seriphidium, Abrotanum and Absinthium to the status of subgenera. Later Rydberg (1916) promoted Dracunculus to the same rank. Gray (1884) kept sections Seriphidium and Dracunculus but united Abrotanum and Absinthium into one new section Euartemisia. Hall \& Clements (1923) attempted the first phylogenetic interpretation of the four sections, on the basis of three transformations. These were receptacle becoming hairy, loss of female fertility in disc florets and a complete reduction of the female florets. The three sections Absinthium, Dracunculus and Seriphidium were considered to be three coherent groups derived as three separate lines from an ancestral Abrotanum.

The most recent treatments have been by Russian and Chinese botanists (Drokhina, 1978; Poljakov, 1961, 1967; Wang, 1979; Leonova, 1971, 1980; Korobkov, 1979). Krascheninnikov (1946) re-sorted Gray's section Euartemisia, raising it to subgeneric rank but kept Dracunculus and Seriphidium as two separate subgenera. The most radical treatment is that of Poljakov (1961). He used the section Artemisia s. s. to accommodate distinctive species of the 'Artemisia vulgaris'-group as distinct from section Abrotanum. This, together with sections Abrotanum and Absinthium, comprised a smaller genus Artemisia. Seriphidium and Dracunculus (=Oligosporus) were raised to generic rank
together with some other small genera (Kaschgaria, Neopallasia, Turaniphytum and Mausolea).

The most recent classifications of Artemisia and its allies are those of Y. R. Ling (1980b, 1982, 1984 1988a, b, 1991b). In his 1982 treatment he recognizes nine sections of Artemisia and considers Abrotanum and Absinthium the primitive ones, from where the others, as well as a number of related genera have evolved. It is worth noting that Ling considers Seriphidium as a separate genus. Ling (1984) divides the genus into two subgenera, Artemisia and Dracunculus, and maintains the three traditional sections, Abrotanum, Absinthium and Dracunculus. Seriphidium is kept as a separate genus and a number of new combinations are made concerning Chinese species.

Absinthium has been variably maintained as a section, sunk into subgenus Artemisia (i. e. Abrotanum), or raised to subgeneric rank. The main distinguishing feature, and in fact the only criterion used for recognition, is the presence of a ring of receptacular hairs around the base of each flower. However, even Gray (1884) noted that in certain species there is only a partial presence, or indeed, a complete absence of this character. Poljakov (1961) maintains that it is incorrect to sink Absinthium because most species do in fact have the character. He notes also that many species of Absinthium have a dense, woolly pubescence of white silky hairs. As far as we can judge, certain species of different sections are artificially separated by this character. Furthermore, there are those taxa with a dense indumentum but without receptacular hairs, and there are those without a silky indumentum but with receptacular hairs. The problem is left to an internal generic study beyond the scope of this work.

The section or subgenus Dracunculus is distinguished by the fact that the pistil of the central florets is abortive and they are therefore functionally male. The central ovaries are uniformly sterile and very reduced. This condition is found also in Mausolea and Picrothamnus. We agree with Hall \& Clements (1923) that Dracunculus is a monophyletic group, but only so if Mausolea and Picrothamnus are included. Future work on generic delimitation of Artemisia s. 1. will probably result in Dracunculus being removed from Artemisia. As a separate genus it will be named Oligosporus, following Cassini (1817) and Poljakov (1961). (Dracunculus Miller applies to plants of Araceae.) The problem of Mausolea and Picrothamnus and their sister group, Oligosporus as a whole or only a part of it, also has to be considered, Many species are involved and several new combinations necessary. For these reasons we have for the time being provisionally retained Oligosporus as an infrageneric taxon Dracunculus within Artemisia.

Seriphidium, commonly treated as a section or subgenus of Artemisia, is recognized here as a separate genus, following Poljakov (1961) and Y. R. Ling (1982, 1984).

Neopallasia and Turaniphytum are two small generic segregates established by Poljakov $(1955,1961)$. Apparently they have their sister group(s) within Artemisia, paraphyletic as presently circumscribed. A proper generic circumscription of Artemisia, considering also these segregate genera as well as Oligosporus (Artemisia sect. Dracunculus), Picrothamnus and Mausolea, is a major task considering the numerous species involved. Work on this problem has been undertaken by Yeou-Ruenn Ling at The Natural History Museum, London and Institute Sinica, Guangzhou.

The list of species is compiled from the major floras, with recently described species added. From those areas, notably

China, without recent floristic accounts the list must naturally be taken as rather preliminary. In those cases where major floras disagree on synonymy, the more recent treatments have generally been followed.
*A. abaensis Y. R. Ling \& S. Y. Zhao. China.
A. abrotanum L. Eurasia, widely cultivated and introduced, also in N. America.
A. absinthium L. Eurasia and N. Africa, widely introduced, also in N. America.
A. abyssinica Schultz-Bip. Saudi Arabia.
A. adamsii Besser. S. Siberia, Mongolia, China.

* A. afghanica Rech. f. Afghanistan.
A. afra Jacq. Africa S. of Sahara.
*A. aksaiensis Y. R. Ling. China.
A. alaskana Rydb. N. America in Alaska.
A. albicerata H. Kraschen. C. Asia.
A. aleutica Hultén. Aleutian Islands.
*A. altaiensis H. Kraschen. S. Siberia, Mongolia.
*A. amygdalina Decne. Himalayas.
A. andersiana Podl. Afghanistan.
A. anethifolia G. Weber in Stechm. E. Siberia, Mongolia, China.
A. anethoides Mattf. China.
*A. angustissima Nakai. China, Japan.
A. аппиа L. Eurasia, widespread and introduced, also in N. America.
A. anomala S. Moore. China.
*A. aquatica Lour. China.
A. arborescens L. S. Europe, Turkey, Middle East, N. Africa from Libya to Morocco.
A. arctica Less. Siberia, Japan, W. North America.
*A. arctisibirica Korobkov. Siberia.
A. argyi A. Léveillé \& Vaniot. Far East, Mongolia, China, Korea.
*A. argyrophylla Ledeb. Mongolia, China.
A. armeniaca Lam. SE European Russia, Turkey, Iran, S. Siberia.
A. aschurbajewii C. Winkler. C. Asia.
A. atlantica Cosson \& Durieu. N. Africa in Tunisia, Algeria and Morocco.
A. atrata Lam. C. Europe.
A. atrovirens Hand.-Mazz. China.
A. aucheri Boiss. Iran, Pakistan.
${ }^{*}$ A. aurata V. Komarov. Far East, China, Korea.
A. australis Less. Hawaii Islands.
A. austriaca Jacq. E. and E.C. Europe, Turkey, Iran, Afghanistan, C. Asia, W. Siberia, Far East, China.
A. austro-himalayensis (Y. R. Ling \& H. S. Puri.) Y. R. Ling \& H. S. Puri. N. India.
* A. austro-yunnanensis Ling \& Y. R. Ling. China.
${ }^{*}$ A. avarica Minat. Caucasus.
${ }^{*}$ A. baimaensis Y. R. Ling \& Z. C. Z. Y. Zhuo. China.
*A. banihalensis Kaul \& Bakshi. India.
*A. bargusinensis Sprengel. E. Russia, Siberia.
* A. bejdemaniae Leonova. Siberia.
A. bierınis Willd. Eurasia, widespread and widely introduced, also in N. America.
*A. blepharolepis Bunge. Mongolia, China.
A. borealis Pallas - Note: The delimitation towards A. campestris is unclear. In Flora europaea (Tutin et al., 1976) this species is treated as a subspecies of A. campestris. N . Europe, Siberia, Mongolia, China, N. America.
A. borealo-siamensis Y. R. Ling. N. Thailand
*A. brachyloba Franchet. China.
*A. brachyphylla Kitam. China, Korea.
*A. brevis Pampan. China.
*A. burmanica Pampan. China.
A. caespitosa Ledeb. S. Siberia, Mongolia, China.
A. californica Less. United States in California and Mexico in Baja California.
* A. calophylla Pampan. China.
A. campbellii Hook. f. \& Thomson. Himalayas, China in Tibet.
A. campestris L. - Note: See note under A. borealis. Widespread in Eurasia, N. America, and N. Africa.
A. camphorata Villars. Europe.
A. canariensis (Besser) Less. Canary Islands.
* A. cannabifolia A. Léveillé. China.
A. cantabrica (Lainz) Lainz. SW Europe in Spain.
A. capillaris Thunb. Far East, China, Japan, SE Asia in Malaya.
A. carruthii Wood. W. United States.
A. caruifolia Buch.-Ham. in Roxb. Himalayas.
*A. cashimirica Kaul \& Bakshi. India.
A. caucasica Willd. S. European Russia, Caucasus, Turkey.
A. chamaemelifolia Villars. C. and SW Europe, Caucasus, Turkey, Iran.
*A. chiajeana Kunze. Iran.
*A. chiarugii Pampan. China.
*A. chienshanica Ling \& W. W. Wang. China.
*A. chingii Pampan. China.
A. chitachensis Cosson ex Battand. \& Trabut. N. Africa.
*A. chrysolepis Kitagawa. China.
*A. conaensis Ling \& Y. R. Ling. China.
*A. congesta Kitam. Japan.
A. copa Philippi. S. America (Argentina \& Chile).
*A. coracina W. W. Wang. China.
A. crithmifolia L. Europe.
*A. cuspidata H. Kraschen. E. Siberia.
*A. daghestanica H. Kraschen. \& Pors. Caucasus and adjacent parts of Russia (Daghestan).
*A. dahurica (Turcz.) Polj. China.
*A. dalai-lamae H. Kraschen. China in Tibet.
*A. demissa H. Kraschen. C. Asia, China.
*A. densifolia Filat. Algeria.
*A. depauperata H. Kraschen. Mongolia.
A. desertorum Sprengel. Far East, E. Siberia, Mongolia, China.
*A. dimoana Popov. SW \& C. Asia.
A. disjuncta H. Kraschen. Mongolia, China.
*A. divaricata (Pampan.) Pampan. Mongolia, China.
*A. diversa Diels. China.
*A. dolichocephala Pampan. Himalayas.
A. douglasiana Besser in Hook. f. W. United States.
*A. dracunculiformis H. Kraschen. Arctic Siberia.
A. dracunculus L. (A. glauca Pallas ex Willd.). Eurasia, widely cultivated and introduced, also in N. America.
A. dubia Wallich ex Besser. Himalayas, China.
*A. dudinensis V. P. Amel'chenko. Siberia.
*A. duthreuil-de-rhinsi H. Kraschen. China in Tibet.
*A. edgeworthii Balakr. China.
A. eldarica Rzazade. Russia.
*A. elegantissima Pampan. W. Himalayas.
A. emeiensis (Chang) Y. R. Ling. China.
A. eriantha Ten. C. and SW Europe.
*A. eriocephala Pampan. W. Himalayas.
A. eriopoda Bunge. China.
*A. erlangshanensis Ling \& Y. R. Ling. China.
*A. faurieri Nakai. Korea, Japan.
A. filifolia Torrey. W. United States.
A. filiformilobulata Y. R. Ling \& H. S. Puri. India.
A. flaccida Hand.-Mazz. China.
*A. flahaultii Emb. \& Maire. N. Africa in Morocco.
A. flava Jurtzev. Siberia.
*A. flavifolia Gilli. Afghanistan.
* A. forrestii W. Smith. China.
A. franserioides Greene. W. N. America.
A. freyniana (Pampan.) H. Kraschen. Far East, Mongolia, China, Korea.
A. frigida Willd. SE Russia, C. Asia, Siberia, Mongolia, China, N. America.
*A. frigidioides H. C. Fu \& Z. Y. Zhu. China.
*A. fukudo Makino. Korea, Japan.
*A. fulgens Pampan. China.
A. furcata M. Bieb. E. Siberia, N. America in Alaska and Canada.
*A. gabriellae Braun-Blanquet. SW Europe.
A. gangsuensis Ling \& Y. R. Ling. China.
A. genipi G. Weber in Stechm. C. Europe.
*A. gilvescens Miq. China, Japan.
A. giraldii Pampan. China.
*A. glabella Karelin \& Kir. China, C. Asia, W. Siberia, Mongolia.
A. glacialis L. C. Europe.
*A. globosa H. Kraschen. Mongolia, China.
*A. globosoides Ling \& Y. R. Ling. China.
A. globularia Cham. ex Besser. E. Siberia, N. America in Alaska.
A. glomerata Ledeb. Arctic and E. Siberia, Japan, N. America in Alaska and Canada (Yukon).
A. gmelinii G. Weber in Stechm. Himalayas, C. Asia, Siberia, Far East, Mongolia, China, Korea, Japan.
A. gongshanensis Y. R. Ling \& Humphries. China.
*A. gorgonum Webb in Hook. Cape Verde Islands.
A. granatensis Boiss. SW Europe in Spain.
*A. graveolens Minat. Caucasus.
*A. gyangzeensis Ling \& Y. R. Ling. China.
*A. gyitangensis Ling \& Y. R. Ling. China.
*A. haichowensis Chang. China.
A. hallaisanensis Nakai. Korea.
*A. halodendron Turcz. ex Besser. E. Siberia, Mongolia, China.
*A. hancei (Pampan.) Ling \& Y. R. Ling. China, IndoChina.
*A. haussknechtii Boiss. Turkey, Iraq, Iran.
A. hedinii Ostenf. \& Pauls in Hedin. China in Tibet.
*A. henriettae H. Kraschen. Arctic Siberia.
*A. hillebrandii Skottsb. Hawaii Islands.
*A. hippolytii Butkov. Russia.
A. hispanica Lam. Spain.
A. hololeuca M. Bieb. ex Besser. S. European Russia.
A. hulteniana Vorosch. Aleutian Islands.
A. hultenii Maksimova. Far East.
A. idilongensis Y. R. Ling. China.
*A. ifranensis J. Didier. N. Africa in Morocco.
*A. igniaria Maxim. China.
*A. implicata Leonova. Mongolia.
*A. imponens Pampan. China.
A. incana (L.) Druce. Turkey, Caucasus and adjacent parts of Russia (Daghestan), Iraq, Iran.
A. incisa Pampan. (A. nuristanica Kitam.). Himalayas.
A. indica Willd. Himalayas, China, Taiwan, Japan.
A. insipida Villars. C. Europe in France.
A. insulana H. Kraschen. E. Siberia in Bering Island.
A. integrifolia L. Siberia, Far East, Mongolia, China, Korea.
*A. intramongolica H. C. Fu \& Z. Y. Zhu. China.
A. jacutica Drob. E. Siberia.
A. japonica Thunb. Afghanistan, Pakistan, Far East, China, Korea, Japan, Taiwan.
A. javanica Pampan. Indonesia.
${ }^{*}$ A. jaxatica Polj. C. Asia.
A. jilongensis Y. R. Ling \& Humphries. China.
A. judaica L. Middle East and N. Africa in Egypt, Libya and Algeria.
*A. kabylica Chabert. N. Africa in Algeria.
*A. kanashiroi Kitam. N. China.
*A. kangmasensis Ling \& Y. R. Ling. China.
*A. karavajevii Leonova. Siberia.
A. kauaiensis (Skottsb.) Skottsb. Hawaii Islands.
A. kawakamii Hayata. Taiwan.
A. keiskeana Miq. Far East, China, Korea, Japan.
A. kelleri H. Kraschen. C. Asia.
A. kitadakensis Hara \& Kitam. Japan.
*A. klementzae H. Kraschen. ex Leonova. Mongolia.
A. klotzschiana Besser. N. America in Mexico.
A. koidzumii Nakai. E. Siberia, Far East, Japan.
*A. komarovii Polj. Far East.
*A. kulbadica Boiss. \& Buhse. Iran, C. Asia.
*A. kumykorum Minat. Caucasus.
A. kuschakewiczii Winkler. C. Asia.
A. laciniatiformis V. Komarov. E. Siberia, Far East, N. America in Alaska.
A. lactiflora Wallich ex DC. China, Taiwan.
A. lagocephala (Fischer ex Besser) DC. Siberia, Far East, China.
A. lagopus Fischer ex Besser. E. Siberia, Far East.
A. lamprocaulos Rech. f. Iran.
A. lancea Vaniot (A. feddei Lévl. \& Vaniot). China, Korea, Japan.
A. latifolia Ledeb. Russia, C. Asia, Siberia, Mongolia, China.
A. lavandulifolia DC. Far East, China, Korea.
${ }^{*}$ A. lavei Kostel. China.
A. ledebouriana Besser. E. Siberia.
${ }^{*}$ A. leontopodioides Fischer ex Besser. E. Siberia, Aleutian Islands.
A. leptophylla D. Don. Himalayas (Nepal).
A. leucophylla (Turcz. ex Besser) C. B. Clarke. S. Siberia, Mongolia, China.
* A. limosa Koidz. Far East.
*A. limprichtii (Pampan.) Ling \& Y. R. Ling. China.
*A. lipskyi Polj. C. Asia.
*A. littoricola Kitam. Far East, Japan.
A. longifolia Nutt. Canada and W. United States.
A. Ludoviciana Nutt. Canada and W. United States.
*A. macilenta (Maxim.) H. Kraschen. Far East, China.
*A. maciravae Hutch. \& Dalziel. Africa in Sahara.
A. macrantha Ledeb. European Russia, Siberia, Mongolia, China.
A. macrocephala Jacq. Iran, Afghanistan, Himalayas, S. Siberia, Far East, Mongolia, China.
*A. macrorhiza Turcz. E. Siberia.
A. magellanica Schultz-Bip. S. America in Chile.
A. mairei A. Léveillé. China.
${ }^{*}$ A. manshurica (V. Komarov) V. Komarov. Siberia, China.
A. maroccana Cosson. Morocco.
* A. marschalliana Sprengel. China.
*A. martjanovii H. Kraschen. ex Polj. E. Siberia.
A. mattfeldii Pampan. China.
A. mauiensis (A. Gray) Skottsb. Hawaii Islands.
A. maximovicziana (F. Schum.) H. Kraschen. ex Polj. Far East.
${ }^{*}$ A. medioxima H. Kraschen. ex Polj. Far East, N. China.
A. melanolepis Boiss. \& Kotschy. Iran.
A. mesatlantica Maire. N. Africa in Morocco.
A. michauxiana Besser. W. North America.
A. minor Jacq. in Besser. Himalayas, China in Tibet.
${ }^{*}$ A. molinieri Quezel, Barbero \& R. Loisel. SW Europe in
France.
*A. molluccana Roxb. SE Asia in the Moluccas.
A. momiyamae Kitam. Japan.
A. mongolica (Fischer ex Besser) Nakai. China.
A. monophylla Kitam. Japan.
A. monosperma Del. Turkey, Middle East, N. Africa in Egypt and Libya.
A. montana Pampan. Far East, China, Japan.
*A. montevidensis Sprengel. S. America in Argentina.
*A. moorcroftiana Wallich ex DC. China.
A. morrisonensis Hayata. Taiwan.
*A. multisecta Leonova. C. Asia.
A. mutellina Villars. C. \& S. Europe.
*A. myriantha Wallich ex DC. China, Himalyas, Burma.
*A. nakaii Pampan. China, Korea.
*A. nanshanica H. Kraschen. China in Tibet.
*A. neglecta Leonova. C. Asia.
*A. negrei Ouyahya. Morocco.
*A. nesiotica Raven. W. United States.
A. niitakayamensis Hayata. Taiwan.
A. nilagirica (C. B. Clarke) Pampan. India, Burma.
A. nitida Bertol. C. Europe.
*A. nivalis Braun-Blanquet. C. Europe in Switzerland.
*A. nortonii Pampan. China in Tibet.
A. norvegica Fries. N. Europe, Arctic America.
* A. nujianensis (Ling \& Y. R. Ling) Y. R. Ling. China.
A. obscura Pampan. Mongolia, China.
A. obtusiloba Ledeb. C. Asia, S. Siberia, Mongolia.
*A. occidentali-sichuansensis Y. R. Ling. China.
A. occidentali-sinensis Y. R. Ling. China.
A. occidentali-yunnanensis Ling \& Y. R. Ling. China.
A. oelandica (Besser) V. Komarov. N. Europe in Sweden.
*A. olchonensis Leonova. Siberia.
*A. olgensis (Vorobiev) Vorosch. Russia.
A. oligocarpa Hayata. Taiwan.
A. opulenta Pampan. N. Japan, E. Russia.
*A. oranensis Filat. Algeria.
${ }^{*} A$. ordosica H. Kraschen. China.
${ }^{*}$ A. orientalis (Pampan.) Ling \& Y. R. Ling. China.
A. orientali-hengduangensis Ling \& Y. R. Ling. China.
A. orientali-xizangensis Y. R. Ling \& Humphries. China.
A. orientali-yunnanensis Y. R. Ling. China.
*A. orthobotrys Kitagawa. China.
*A. oxycephala Kitagawa. China.
*A. packardiae Grimes \& Ertter. W. United States.
* A. pallens Wallich ex Besser. India.
A. palustris L. S. Siberia, Far East, Mongolia, China. Mongolia, China, Korea.
A. pancicii (Janka) Ronniger. E.C. Europe.
*A. pannosa H. Kraschen. Far East.
A. papposa Blake \& Cronq. W. United States in Idaho.
A. parryi A. Gray. W. United States.
A. parviflora Buch.-Ham. ex Roxb. China.
A. pattersonii A. Gray. W. United States.
*A. pedatifida Nutt. W. and C. United States.
A. pedunculosa Miq. Japan.
${ }^{*}$ A. pengchuoensis Y. R. Ling \& S. Y. Zhao. China.
A. persica Boiss. Iran, Afghanistan, Himalayas, C. Asia.
*A. pewzowii Winkler. China in Tibet.
*A. phaeolepis H. Kraschen. S. Siberia, Mongolia, China.
*A. phyllobotrys (Hand.-Mazz.) Ling \& Y. R. Ling. China.
*A. polybotryoidea Y. R. Ling. China.
A. pontica L. C. and E. Europe, W. Siberia, introduced in N. America.
* A. porteri Cronq. W. United States in Wyoming.
*A. praticola Klokov. Ukraine.
*A. prattii (Pampan.) Ling \& Y. R. Ling. China.
A. princeps Pampan. China, Korea, Japan, Taiwan.
*A. przewalskii H. Kraschen. China.
A. pseudopontica Schur. E. Europe.
*A. pubescens Ledeb. China.
*A. punctigera H. Kraschen. Far East, European Russia, E. and W. Siberia, Mongolia, N. America.
*A. pycnorhiza Ledeb. C. Asia, S. Siberia, Mongolia.
*A. quinlingensis Ling \& Y. R. Ling. China.
*A. quinqueloba Trautv. C. Asia.
*A. ramosa C. Smith. Canary Islands.
*A. rehan Chiov. Africa in Ethiopia.
${ }^{*}$ A. remotiloba H. Kraschen. ex Polj. E. Siberia.
A. reptans C. Smith ex Link. SW Europe in Spain, N. Africa in Morocco, Canary Islands.
*A. robusta (Pampan.) Ling \& Y. R. Ling. China.
*A. rosthornii Pampan. China.
A. roxburghiana Besser. Afghansitan, Pakistan, Himalayas, China.
*A. rubripes Nakai. Far East, Mongolia, China, Korea, Japan.
A. rupestris L. N. Europe, C. Asia, W. Siberia, Mongolia, China, N. America in Canada.
A. rutifolia Stephen ex Sprengel. Iran, Afghanistan, Himalayas, C. Asia, Siberia, Mongolia, China.
A. sacrorum Ledeb. China, Korea, Japan, Himalayas, C. Asia, Afghanistan.
*A. saitoana Kitam. Far East, Korea.
A. salsoloides Willd. Russia, W. Himalayas, W. Siberia, China in Tibet.
*A. samoiedorum Pampan. Arctic Siberia.
A. santolinifolia Turcz. ex H. Kraschen. Afghanistan, China in Tibet, European Russia, C. Asia, S. Siberia, Mongolia, Pakistan.
*A. saposhnikovii H. Kraschen. ex Polj. C. Asia.
A. schimperi Schultz-Bip. ex Schweinf. Africa in Ethiopia.
*A. schischkinii H. Kraschen. Mongolia.
A. schmidtiana Maxim. Far East, Japan.
A. scoparia Waldst. \& Kit. C. and E. Europe, Turkey, Middle East, Iran, Himalayas, C. Asia, Siberia, Mongolia, China, Japan, N. Africa in Egypt.
A. scopulorum A. Gray. W. United States.
A. selengensis Turcz. ex Besser. E. Siberia, Far East, Mongolia, China.
A. senjavinensis Besser. E. Siberia, N. America in Alaska.
A. sericea G. Weber in Stechm. Russia, Siberia, Mongolia, China.
A. serrata Nutt. W. United States.
*A. serreana Pampan. China.
*A. shangnanensis Ling \& Y. R. Ling. China.
*A. shennongjaensis Ling \& Y. R. Ling. China.
*A. sichuanensis Ling \& Y. R. Ling. China.
A. sieversiana Ehrh. in Willd. European Russia, Himalayas,
C. Asia, Siberia, Far East, China.
*A. simulans Pampan. China.
A. sinanensis Yabe. Japan.
A. sinensis (Pamp.) Ling \& Y. R. Ling. China.
A. smithii Mattf. China.
*A. somai Hayata. Taiwan.
A. songarica Schrenk. C. Asia, China.
*A. speciosa (Pampan.) Ling \& Y. R. Ling. China.
*A. sphaerocephala H. Kraschen. Mongolia, China.
A. splendens Willd. Turkey, Caucasus, Iraq, Iran.
A. stelleriana Besser. Far East, China, introduced in N .

Europe and N. America, Japan.
A. stenophylla Kitam. China, Korea, E. Russia.
A. stipularis Urb. \& Ekman. Haiti.
A. stolonifera (Maxim.) V. Komarov. Far East, China, Japan.
A. stracheyi Hook. f. \& Thomson ex C. B. Clarke (Note added in proof. This taxon was recently removed by Ghafoor (1992) and described as a monotypic genus under the name Artemisiella stracheyii (Hook. f. \& Thomson ex C. B. Clarke) Ghafoor). Himalayas, China in Tibet.
A. stricta Edgew. Iran, Himalayas, China in Tibet.
${ }^{*}$ A. subulata Nakai. Soviet Far East, China, Korea.
A. subviscosa Turcz. E. Siberia.
${ }^{*}$ A. succulenta Ledeb. C. Asia, W. Siberia.
${ }^{*}$ A. succulentoides Ling \& Y. R. Ling. China.
A. suksdorfii Piper. W. Canada and United States.
${ }^{*}$ A. superba Pampan. Mongolia.
A. swatensis Podl. Pakistan.
A. sylvatica Maxim. Far East, Mongolia, N. China.
${ }^{*}$ A. tafelii Mattf. China in Tibet.
A. taibaishanensis Y. R. Ling \& Humphries. China.
${ }^{*}$ A. tainingensis Hand.-Mazz. China.
A. tanacetifolia L. China, N. Korea, C. and W. Russia, Europe, N. America.
A. tangutica Pampan. China.
A. tenuifolia Y. R. Ling \& H. S. Puri. China.
A. thellungiana Pampan. SW China, N. India, Sikkim.
A. tilesii Ledeb. Arctic Eurasia and Arctic N. America.
A. tomentella Trautv. C. Asia.
A. tournefortiana Reichenb. Turkey, Caucasus, Iran,

Afghanistan, Himalayas, C. Asia, Mongolia, China.
*A. transbaicalensis Leonova. Siberia.
*A. trautvetteriana Besser. S. European Russia.
A. tridactyla Hand.-Mazz. China.
${ }^{*}$ A. triniana Besser. Arctic Siberia.
A. tschernieviana Besser. E. Europe, C. Asia, China.
*A. tsugitakaensis (Kitam.) Ling \& Y. R. Ling. China.
${ }^{*}$ A. tsuneoi Tatewaki \& Kitam. Japan.
*A. tukuchaensis Kitam. Himalayas (Nepal).
A. tyitangensis Ling \& Y. R. Ling. China.
A. unalaskensis Rydb. Far East, N. America in Alaska.
*A. ussuriensis Polj. Far East.
*A. velutina Pampan. China.
${ }^{*}$ A. verbenacea (V. Komarov) Kitagawa. China.
A. verlotorum Lamotte. China, Himalayas, Malaya, naturalized in W. and C. Europe and in N. Africa, S. America.
A. vestita Wallich ex Besser. W. Himalayas.
A. vexans Pampan. China, Hinialayas.
*A. viridisquama Kitam. China.
*A. viridissima (V. Komarov) Pampan. China.
*A. viscida (Mattf.) Pampan. Himalayas, China.
*A. viscidissima Ling \& Y. R. Ling. China.
A. vulgaris L. Widespread in Eurasia and N. America, also in

N . Africa, widely introduced e. g. in Australia.
*A. waltonii J. R. Drumm. ex Pampan. China in Tibet.
*A. wellbyi Hemsley \& Pears. China, Himalayas.
*A. wudanica Liou \& W. Wang. China.
*A. xanthochloa H. Kraschen. Mongolia, China.
*A. xerophytica H. Kraschen. Mongolia, China.
*A. xigazeensis Ling \& Y. R. Ling. China.
*A. yadongensis Ling \& Y. R. Ling. China.
A. yongii Y. R. Ling. China.
*A. younghusbandii J. R. Drumm. China in Tibet.
A. yunnanensis Jeffrey ex Diels. China.
*A. zayuensis Ling \& Y. R. Ling. China.
A. zhongdianensis Y. R. Ling. China.
44. NEOPALLASIA Polj. in Bot. Mater. Gerb. bot. Inst. V. A. Komarova 17: 429 (1955). Type species: N. pectinata (Pallas) Polj.

Annual or biennial herbs. Leaves alternate, pectinatepinnatisect with filiform, apically somewhat swollen and mucronulate lobes. Capitula rather small and rounded in a narrow spiciform panicle, disciform. Receptacle narrowly conical, epaleate. Outer female florets narrowly tubular, without teeth. Central florets of two kinds; outer perfect, inner completely sterile with reduced ovaries. Apical anther appendage ovoid-lanceolate and acuminate. Cypselas arranged around the base of the receptacle, oblong-obovoid, somewhat compressed or triquetrous, thin-walled, with many rows of myxogenic cells. Pappus absent.

Distribution. C. Asia, S. Siberia, Mongolia and China. - 3 spp.

Poljakov (1955) distinguished Neopallasia from Artemisia by the characteristic pectinate leaves, the apically truncate (without teeth) outer female florets, the presence of completely sterile central florets (in addition to perfect ones) situated at the apex of a narrowly conical receptacle, the ovoidlanceolate and attenuate anther appendages and the rosetteshaped arrangement of the cypselas around the receptacle. These characters are autapomorphies, though the shape of the anther appendages is hardly spectacular considering the variation present within the subtribe, and the cypsela arrangement follows from the sex distribution within the head, fertile florets being restricted to the outer part or the base of the conical receptacle.

The immediate relatives or the sister group of Neopallasia is not easy to identify. Poljakov suggested that the genus is related to Artemisia sect. Dracunculus because some of the central hermaphrodite florets are sterile. It does seem clear that Neopallasia has its sister group within a presently paraphyletic Artemisia, possibly within sect. Dracunculus as suggested by Poljakov.
Y. R. Ling (1980a) has recently added two Chinese species. The material of those were formerly considered part of N. pectinata s.l.
N. pectinata (Pallas) Polj.
N. tibetica Y. R. Ling
${ }^{*} N$. yunnanensis (Pampan.) Y. R. Ling

45. TURANIPHYTUM Polj. in Komarov, Fl. URSS 26: 880 (1961). Type species: T. eranthemum (Bunge) Polj.

Perennial herbs, somewhat woody at the base. Leaves alternate to rosulate, pinnatisect. Capitula disciform; inflorescence a spike of glomerules with densely congested capitula, or rarely capitula solitary in interrupted, partly congested spikes. Receptacle convex to hemispherical, epaleate. Outer female florets subtended by scaphoid inner involucral bracts, unequally crenate at the apex. Central florets 5 -lobed, apically with long rigid somewhat reddish hairs at the apex. Apical anther appendage lanceolate, acuminate. Cypselas obliquely oblong-obovoid, thin-walled, with rows of myxogenic cells. Pappus absent.

Distribution. C. Asia. - 2 spp.
Turaniphytum was distinguished from Artemisia mainly because of the peculiar inflorescence, with the capitula aggregated into glomerules and arranged in long spikes. These are presumably transformed paniculate inflorescences of the common Artemisia type. Turaniphytum also has scaphoid inner involucral bracts, subtending the outer female florets. The immediate relatives of Turaniphytum are unknown. It may have its sister group within Artemisia.
T. codringtonii (Rech. f.) Polj. (T. kopetdaghense Polj.). Afghanistan.
T. eranthemum (Bunge) Polj.
46. MAUSOLEA Polj. in Trudy Inst. Bot. Alma-Ata 11: 170 (1961). Type species: M. eriocarpa (Bunge) Polj.
A virgate shrub. Leaves alternate, few-lobed or entire. Capitula small and subglobose, rather few and more or less sessile in a reduced panicle, disciform. Receptacle epaleate. Outer female florets without corolla; style-branches dilated, lanceolate, flat, acute. Central florets 5-lobed, apically with bifurcate hairs, hermaphrodite and female-sterile; ovaries reduced and style-branches fused. Apical anther appendage narrowly lanceolate-linear. Cypselas obovoid, densely pilose. Pappus absent.
Distribution. Iran, Afghanistan, and C. Asia. - Monotypic.
Mausolea was separated from Artemisia mainly because of the corollaless marginal flowers. The styles of the marginal flowers are also further modified compared to those of Artemisia, being wider and lanceolate. It is probably related to Picrothamnus as discussed under that genus. The cypsela hairs are straighter and less cobwebby in Mausolea compared to Picrothamnus.
47. PICROTHAMNUS Nutt. in Trans. Amer. Philippi Soc. II, 7: 417 (1841). - Type species: P. desertorum Nutt.

A basally much woody shrublet with older branches transformed into long spines. Leaves alternate, few-lobed. Capitula small and subglobose, solitary or few together along the branches, almost sessile, disciform. Receptacle epaleate. Outer female florets tubular. Central florets 5-lobed, with long cobwebby bifurcate hairs, hermaphrodite and femalesterile; ovary reduced and style-branches fused. Apical
anther appendage lanceolate-linear. Cypselas obovoid, thinwalled, densely cobwebby-pilose with bifurcate hairs. Pappus absent.
Distribution. N. America in western United States. Monotypic.

Picrothamnus was established by Nuttall but reduced by Eaton (in Watson, 1871), a classification accepted by most later authors. Hence it is generally known as Artemisia spinescens D. C. Eaton. Hall \& Clements (1923) consider it 'in all essentials an Artemisia of the section Dracunculus'. The spiny habit and the cobwebby-pilose corollas are autapomorphies of Picrothamnus. The cobwebby-pilose cypselas are shared with Mausolea, the probable sister group. Together they are related to Artemisia sect. Dracunculus because of their functionally male central florets with reduced ovaries and fused style-branches. Pending a revised generic delimitation of Artemisia we think these genera should be retained rather than sunk in Artemisia.

7. ACHILLEINAE Bremer \& Humphries, subtrib. nov.

Type species: Achillea millefolium L.

Herbae annuae vel perennes vel suffrutices. Receptaculum paleaceum. Corolla flosculorum disci tubo varie saccato et incrassato, saltem adaxialiter basi saccato. Cypselae parietibus tenuibus, plerumquefasciculis vascularibus duobus lateralibus interdum etiam fasciculo uno adaxiali vel nonnunquam fasciculis 4-5 instructae, interdum compressae, saepe cellulis mucilaginis instructae. Pappus nullus.
Annual or perennial herbs or shrublets. Leaves variously dissected, sometimes vermiform, rarely few-lobed or entire. Capitula solitary or corymbose, radiate or discoid. Receptacle variously shaped, often conical, paleate. Ray floret limb white or yellow. Disc corolla 5-lobed; tube variously saccate and thickened in fruit, basally saccate at least adaxially. Cypselas thin-walled, generally with 2 lateral and with or without 1 adaxial strand, sometimes 4-5-stranded, sometimes flattened, often with myxogenic cells. Pappus absent.

Distribution (Table 16): Eurasia and N. Africa, mainly in S. Europe, the Mediterranean and SW Asia, also in N. America, some species of Achillea widely introduced also in the S. hemisphere and one species of Santolina introduced in N. America. -9 genera, 147 spp.

Some groupings within this subtribe have been recognized
earlier. The relationship between Achillea, Anacyclus, and Leucocyclus has been pointed out by Humphries (1979) and phytochemical investigations have indicated a close relationship between Chamaemelum and Cladanthus. Both genera accumulate similar thiophene derivatives (Greger, 1977). Phytochemistry has also contributed to the recognition of subtribe Achilleinae. Achillea and Anacyclus, Chamaemelum and Cladanthus, as well as Otanthus, all synthesize amides (Greger, 1977; Bohlmann et al., 1973). Santolina has a different chemistry, plesiomorphic in being similar to Tanacetum, but it is here provisionally accepted in Achilleinae because of its adaxially saccate corolla and the paleate receptacle. Leucocyclus, Mecomischus, and Rhetinolepis, three little-known North African genera, are also included in Achilleinae and considered related to Chamaemelum and Cladanthus on a number of morphological characters. Mecomischus and Rhetinolepis have not been investigated chemically.

The cladogram is one of nine equally parsimonious cladograms. They involve rearrangements at the base and among the last four genera. In all cladograms and hence also in the strict consensus tree, clades Ac4 (Achillea, Anacyclus, Leucocyclus), Ac5 (Anacyclus and Leucocyclus), Ac6 (Mecomischus, Chamaemelum, Rhetinolepis, Cladanthus), and Ac8 (Rhetinolepis and Cladanthus) were present.

Clades and characters - Fig. 8, Tables 2, 17.

Fig. 8 Cladogram (of nine possible) of the Achilleinae produced by the ie option. Cladogram length $=34$, consistency index $=88$, retention index $=85$.

Clade Ac1 - subtribe Achilleinae

45 Receptacle paleate.

82 Disc corolla tube thickened in fruit. This character is variously strongly expressed in the different genera, most clearly in Otanthus. It is hardly evident in Achillea, Anacyclus, and Leucocyclus.

Table 16 General distribution of Achilleinae and genera. $x=$ indigenous, $o=i n t r o d u c e d$.

	N.Am.	Eur- Asia	$\begin{aligned} & \text { C.\& E. } \\ & \text { Asia } \end{aligned}$	SW Asia	S.Eur.	N.Afr.	S.Afr.	Austr. N.Zeal.	S.Am.
Achilleinae	O	X	X	X	X	X	O	O	0
Santolina	o				x	x			
Otanthus		x	X	x					
Achillea	o	x	x	x	X	x	o	o	0
Anacyclus		x			x	x			
Leucocyclus		x							
Mecomischus						x			
Chamaemelum		x			x	X			
Rhetinolepis						x			
Cladanthus					x	x			

Table 17 Data matrix for the Achilleinae. $1=$ presence, $0=$ absence, ? = missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

84 Disc corolla tube basally saccate at least adaxially.
172 Pappus absent in ray and disc cypselas.

Santolina

2 Plants shrubby.
35 Capitula discoid. Some Anacyclus and Chamaemelum species are also discoid, as well as Otanthus and Rhetinolepis.

Clade Ac2

181 Amides present. Leucocyclus, Mecomischus, and Rhetinolepis have not been investigated chemically.

Otanthus

9 Plants covered with a dense greyish-white indumentum.
15 reversed. Leaves not variously deeply lobed or divided, but entire or crenulate only.

29 Capitula densely corymbose. Most species of Achillea also have densely corymbose capitula.

35 Capitula discoid.

86 Corolla basally copiously swollen and spongy, almost enclosing the cypsela especially laterally.

Clade Ac3

130 Cypselas with 2 lateral vascular strands, sometimes also with 1 adaxial strand. This cypsela vascularization is also characteristic of a large part of subtribe Matricariinae, but the two groups do not seem closely related.

Clade Ac4

58 Ray and disc floret tube dorsiventrally flattened.
82 reversed. See clade Ac1.

114 Cypselas dorsiventrally flattened. Flattened cypselas occur in various subtribes.

Achillea

There is no obvious autapomorphy for this large genus.

Clade Ac5

117 Cypselas laterally winged. Some genera of the Cotula group (Matricariinae) also have winged cypselas. As noted above (clade Ac3) the groups are not closely related.

119 Cypselas with sclerenchymatic lateral wings.

Anacyclus

61 Ray floret tube persistent on the cypsela. This character occurs also in some genera of subtribe Thaminophyllinae.

Leucocyclus

27 Leaves vermiform. Some species of Santolina also have vermiform leaves.

51 reversed. Floral parts without resin canals.
85 Disc corolla deeply and equally saccate both abaxially and adaxially.
Clade Ac6
41 Involucral bracts wide, flabelliform. This character reverses in the small-headed genus Rhetinolepis.

139 Cypselas completely covered with rows of myxogenic cells.
154 Cypselas thin-walled, obovoid to oblanceolate, devoid of ribs. The same type of cypselas is characteristic of the unrelated Artemisia and allies in subtribe Artemisiinae.

Mecomischus

There is no obvious autapomorphy for this little-known genus.

Clade Ac7

180 Particular thiophene derivatives present. Rhetinolepis has not been investigated chemically.

Chamaemelum

There is no autapomorphy for Chamaemelum. The genus is variable in several characters.

Clade Ac8

1 Plants annual. Some species of Chamaemelum and other genera of the Achilleinae are also annuals.

7 Plants with branches in whorls below the first capitula. The capitula of Rhetinolepis and Cladanthus are very different in size and shape, but sessile (following character) and arranged similarly.
34 Capitula sessile along the stems.
50 Receptacular paleae pilose. This character also occurs in some species of Chamaemelum, as well as in the unrelated Eriocephalus in subtribe Matricariinae.

Rhetinolepis

11 Plants with dolabriform hairs.
35 Capitula discoid.

41 reversed. See clade Ac6.

Cladanthus

48 Receptacle pilose. Some genera of subtribe Thaminophyllinae also have pilose receptacles.

52 reversed. Ray floret limb not white, but yellow.
73 Disc corolla lobes with dorsal appendages. Corolla lobe appendages occur also in various genera of subtribes Leucantheminae and Matricariinae.

116 Disc cypselas laterally flattened. Laterally flattened but otherwise quite different cypselas occur in subtribe Chrysantheminae.
48. SANTOLINA L., Sp. pl.: 842 (1753). Type
species: S. chamaecyparissus L.
Shrublets. Leaves alternate, dentate to pinnatifid or pinnatisect, sometimes vermiform. Capitula solitary, pedunculate, discoid. Receptacle convex, paleate; paleae with a central resin canal. Corolla 5 -lobed, basally saccate around the cypsela especially adaxially, with a rather long bent tube and a distinct limb. Cypselas 3-5-angled, sometimes with myxogenic cells. Pappus absent.

Distribution. S. Europe, mainly in Spain but extending to Jugoslavia, and N. Africa in Morocco and Algeria, one species (S. rosmarinifolia) introduced in N. America. - 8 spp.
Santolina is provisionally placed in Achilleinae. It differs in chemistry from the other genera of this subtribe, containing polyacetylenes and other substances similar to those in Tanaceturn (Greger, 1977). It may be a derivative of that genus rather than the sister group of the genera of Achilleinae. Although some efforts have already been made to identify taxa based on chromosome numbers (e.g. Arrigoni, 1977) Santolina is in need of revision. There are two species, S. chamaecyparissus and S. rosmarinifolia, with numerous synonyms and many variants. A few 'species' have been described from North Africa. Apparently they belong under the complex European species.
S. chamaecyparissus L.
S. elegans Boiss. ex DC.
*S. insularis (Gennari ex Fiori) Arrig.
*S. ligustica Arrig.
*S. marchi Arrig.
S. oblongifolia Boiss.
S. rosmarinifolia L.
S. viscosa Lagasca
49. OTANTHUS Hoffsgg \& Link, Fl. portug. 2: 364 (1889). Type species: O. maritimus (L.) Hoffsgg \& Link - Diotis Desf.

A suffruticose perennial covered with a dense greyish-white indumentum. Leaves alternate, entire or crenulate. Capitula corymbose, discoid. Receptacle convex, paleate; paleae with a central resin canal. Corolla 5-lobed, basally copiously swollen and spongy, almost enclosing the cypsela especially laterally. Cypselas with 4-5 weak ribs, thin-walled, glandular. Pappus absent. Amides present.

Distribution. Europe, N. Africa, and SW Asia extending
from Ireland to Caucasus, along sea shores, mainly in the Mediterranean. - Monotypic.
This characteristic species is known also as Diotis candidissima Desf. The interrelationships of Otanthus have been obscure but it seems that it is an autapomorphic member of subtribe Achilleinae, sharing the same chemistry as most members of the subtribe. The copiously swollen corolla base also indicates the same relationship, though the character is not so extremely developed in the other genera.
50. ACHILLEA L., Sp. pl.: 896 (1753). Type species: A. millefolium L .

Perennial herbs generally with rhizomes. Leaves alternate, pinnatisect, lobed or rarely entire. Capitula comparatively small, generally corymbose or rarely few together or solitary, radiate or rarely discoid. Receptacle flat to convex or conical or rarely much elongated, paleate; paleae sometimes with a central resin canal. Ray florets female, fertile; limb rather short and wide, white or yellow; tube more or less flattened. Disc corolla 5-lobed, more or less flattened, basally slightly saccate around the cypsela especially adaxially, white, yellow, or pink. Cypselas dorsiventrally flattened, with two lateral ribs with vascular strands, a third adaxial vascular strand rarely present. Pappus absent. Amides present.

Distribution. Europe and temperate Asia, some species also in N. Africa, a few species, in general A. millefolium (s. 1.) naturalized in N. America and also in the S. hemisphere; most species in SE Europe and SW Asia. - 115 spp.

Achillea is a large genus, but with respect to floral characters, homogeneous and well defined. The cypselas are flattened and thin-walled with 2 lateral ribs and the corolla is basally slightly saccate around the cypsela (Khandzhyan, 1983). The list of species is compiled from standard floras.
A. abrotanoides (Vis.) Vis. SE Europe.
A. absinthoides Hal. SE Europe (Greece).
A. acuminata (Ledeb.) Schultz-Bip. E. Siberia, Far East, Mongolia, China, Japan.
A. aegyptiaca L. SE Europe (Greece).
A. ageratifolia (Smith in Sibth. \& Smith) Boiss. SE Europe.
A. ageratum L. S. Europe and N. Africa in Morocco.
A. aleppica DC. Turkey, Middle East, Iraq, Iran.
*A. alpina L. E. Siberia, Far East, Mongolia, China, Himalayas.
*A. ambrosiaca (Boiss. \& Heldr.) Boiss. SE Europe (Greece).
A. arabica Kotschy. Middle East.
*A. asiatica Serg. C. Asia, Siberia, Far East, Mongolia, China.
A. asplenifolia Vent. E. Europe.
A. atrata L. C. Europe.
A. aucheri Boiss. Iran.
A. barbeyana Heldr. \& Heimerl in Heimerl. SE Europe (Greece).
A. barrelieri (Ten.) Schultz-Bip. S. Europe (Italy).
A. biebersteinii Afan. (A. micrantha Willd., A. micranthoides Klokov). E. Europe, S. European Russia, Turkey, Caucasus, Middle East, Iran, Afghanistan, C. Asia.
A. biserrata M. Bieb. Caucasus.
*A. boissieri (Hausskn.) Boiss. Turkey.
*A. brachyphylla Boiss. \& Hausskn. in Boiss. Turkey.
*A. bucharica Winkler. C. Asia.
A. callichroa Boiss. Iran.
A. camtschatica Rupr. ex Heimerl. E. Siberia.
A. cappadocica Hausskn. \& Bornm. Turkey.
A. cartilaginea Ledeb. ex Reichenb. (A. septentrionalis
(Serg.) Botsch.). E. Europe, Siberia, C. Asia.
A. chamaemelifolia Pourret. SW Europe.
A. chrysocoma Friv. SE Europe.
A. clavennae L. C. and SE Europe.
A. clypeolata Sibth. \& Smith SE Europe.
A. coarctata Poiret in Lam. SE Europe, Turkey.
A. collina J. Becker ex Reichenb. C. and SE Europe.
A. compacta Willd. SW Europe, S. Russia.
A. conferta DC. Syria, Iraq, Iran.
A. cretica L. SE Europe, Cyprus, Turkey.
A. crithmifolia Waldst. \& Kit. C. and SE Europe.
*A. cucullata (Hausskn.) Bornm. Turkey.
${ }^{*}$ A. cuneatiloba Boiss. \& Buhse. Caucasus, Iran.
*A. decolorans Schrader. Turkey.
A. depressa Janka. E. and SE Europe.
A. distans Waldst. \& Kit. ex Willd. C. Europe.
A. erba-rotta All. C. and SE Europe.
A. falcata L. Turkey, Middle East, Iraq.
A. filipendulina Lam. Caucasus, Iran, Afghanistan, C. Asia.
A. fraasii Schultz-Bip. Turkey, SE Europe.
A. fragrantissima (Forssk.) Schultz-Bip. N. Africa in Egypt, Middle East, Iraq.
A. gerberi Willd. W. Asia, S. Europe, Russia.
A. glaberrima Klokov. S. European Russia.
A. goniocephala Boiss. \& Bal. in Boiss. Turkey.
A. grandifolia Friv. SE Europe, Turkey.
A. griseo-virens Albov. Caucasus.
A. gypsicola Huber-Mor. Turkey.
A. holosericea Sibth. \& Smith. SE Europe.
A. impatiens L. E. Europe (Romania), Siberia, China.
A. inundata Kondr. in Wissjul. S. European Russia.
*A. japonica Heimerl. Far East, China, Japan.
*A. kellalensis Boiss. \& Hausskn. in Boiss. (A. haussknechtii Boiss.). Iran.
A. kotschyi Boiss. Turkey.
*A. latiloba Ledeb. ex Nordm. Caucasus.
${ }^{*}$ A. ledebourii Heimerl. S. Siberia, China.
A. leptophylla M. Bieb. E. Europe, S. European Russia, N. Africa in Morocco and Algeria.
A. ligustica All. S. Europe, N. Africa in Morocco, Algeria and Tunisia.
A. lingulata Waldst. \& Kit. SE Europe.
A. lucana Pign. Italy.
A. lycaonica Boiss. \& Heldr. in Boiss. Turkey.
*A. macrocephala Rupr. Far East, Japan.
A. macrophylla L. C. Europe.
A. magnifica Huber-Mor. Turkey.
A. maura Humbert. N. Africa in Morocco.
A. membranacea (Labill.) DC. Turkey, Middle East, Iraq.
A. millefolium L. (A. lanulosa Nutt., A. sudetica Opiz). Widespread in Eurasia and N. America, introduced in Australia and New Zealand.
*A. monocephala Boiss. \& Bal. in Boiss. Turkey.
A. multifida (DC.) Boiss. Turkey.
A. nana L. C. Europe.
A. nobilis L. (A. neilrichii A. Kerner). S. and C. Europe, European Russia, W. Siberia, Turkey, Caucasus, Iran, C. Asia.
A. ochroleuca Ehrh. E. Europe.
A. odorata L. C. and SW Europe, N. Africa in Morocco and Algeria.
A. oligocephala DC. Turkey, Middle East, Iraq, Iran.
A. oxyloba (DC.) Schultz-Bip. C. and E. Europe.
A. oxyodonta Boiss. Iran.
*A. pachycephala Rech. f. Iran.
A. pannonica Scheele. C., E. and SE Europe.
A. phrygia Boiss. \& Bal. in Boiss. Turkey.
A. pindicola Hausskn. SE Europe (Greece).
*A. pseudoaleppica Huber-Mor. Turkey.
A. ptarmica L. Widespread in Eurasia, introduced in N . America.
A. ptarmicifolia (Willd.) Rupr. ex Heimerl. Caucasus.
A. ptarmicoides Maxim. E. Siberia, Far East, China, Japan.
A. pyrenaica Sibth. ex Godron in Gren. \& Godron. SW Europe.
A. roseo-alba Ehrend. C. Europe.
*A. sachokiana Sosn. Caucasus.
A. salicifolia Besser. European Russia, Siberia, C. Asia, China.
A. santolina L. Throughout N. Africa, Middle East, Iraq, Pakistan.
A. santolinoides Lagasca. SW Europe, N. Africa in Morocco and Algeria.
*A. schischkinii Sosn. Turkey, Caucasus.
*A. sedelmeyeriana Sosn. Caucasus.
*A. serbica Nyman (A. schurii Schultz-Bip.). SE Europe.
A. setacea Waldst. \& Kit. S., C. and SE Europe, European Russia, S. Siberia, Turkey, Iran, Afghanistan, C. Asia, China.
A. sibirica Ledeb. Siberia, Japan, N. America in Alaska and Canada.
A. sieheana Stapf. Turkey.
A. sintenisii Huber-Mor. Turkey.
A. sipikorensis Hausskn. \& Bornm. Turkey.
*A. spinulifolia Fenzl ex Boiss. Turkey.
A. stricta (Koch) Schleicher ex Gremli. C. Europe.
A. talagonica Boiss. (A. oxylepis Boiss. \& Hausskn. in Boiss.). Iran.
A. tanacetifolia All. Europe.
A. taygetea Boiss. \& Heldr. in Boiss. SE Europe (Greece).
A. tenuifolia Lam. Turkey, Caucasus, Iran.
${ }^{*}$ A. teretifolia Willd. Turkey.
A. thracica Velen. E. Europe.
A. tornentosa L. SW Europe.
A. umbellata Sibth. \& Smith. SE Europe (Greece).
A. vermicularis Trin. Turkey, Caucasus, Iraq, Iran.
*A. virescens (Fenzl) Heimerl in A. Kerner. SC Europe.
A. wilhelmsii Koch (A. kermanica Gand.). Turkey, Caucasus, Syria, Iraq, Iran, Afghanistan, Pakistan, C. Asia.
*A. wilsoniana Heimerl ex Hand.-Mazz. China.
51. ANACYCLUS L., Sp. pl.: 892 (1753). Type species: A. valentinus L.
Annual or perennial herbs. Leaves alternate, rarely rosulate, pinnatisect. Capitula solitary or laxly corymbose, pedunculate, rarely closely aggregated, radiate or discoid. Receptacle flat to conical, paleate. Ray florets female, fertile; tube flattened, persistent on the cypselas; limb white or yellow, abaxially sometimes reddish. Disc corolla 5-lobed, sometimes slightly zygomorphic with 2 larger lobes; tube somewhat flattened and adaxially slightly saccate. Cypselas dorsiventrally flattened and laterally winged, rather thick-walled,
apically sometimes coroniform, sometimes with myxogenic cells; wings thick and sclerenchymatic. True pappus absent. Amides present.

Distribution. Mainly W. Mediterranean; N. Africa, S. Europe and the Middle East. - 12 spp.
Anacyclus was revised and discussed in detail by Humphries (1979), who also indicated Leucocyclus as the sister group.
A. clavatus (Desf.) Pers.
A. homogamos (Maire) Humphries
A. inconstans Pomel
A. latealatus Huber-Mor.
A. linearilobus Boiss. \& Reuter
A. maroccanus (Ball) Ball
A. monanthos (L.) Thell. (A. cyrtolepidiodes Pomel)
A. nigellifolius Boiss.
A. officinarum Hayne
A. pyrethrum (L.) Lagasca
A. radiatus Lois.
A. valentinus L.

52. LEUCOCYCLUS Boiss. in Diagn. pl. orient. I

 (II): 14 (1849). Type species: L. formosus Boiss.A perennial herb. Leaves alternate, vermiform, pinnatisect. Capitula solitary, pedunculate, radiate. Receptacle flat to convex, paleate. Ray florets female, fertile; tube flattened, both adaxially and abaxially vaginate around top of cypsela; limb white. Disc corolla 5-lobed; tube flattened, both adaxially and abaxially but not laterally vaginate around top of cypsela. Cypselas dorsiventrally flattened and laterally winged, rather thick-walled; wings thick and sclerenchymatic. Pappus absent.
Distribution. SW Asia in Turkey. - Monotypic.
This monotypic genus is the sister group of Anacyclus, as shown by Humphries (1979). Recent work by ValentVetschera (1982) has indicated that Leucocyclus is similar in flavonoid chemistry to certain members of Achillea sect. Santolinoidea. This is opposed to cypsela morphology, grouping Leucocyclus with Anacyclus, and requires further investigation.
53. MECOMISCHUS Cosson ex Benth. in Benth. \& Hook. f., Gen. pl. 2: 418 (1873). Type species: M. geslini (Cosson) Cosson (M. pedunculatus (Cosson \& Durieu) Maire).
Annual or perennial herbs. Leaves alternate or sometimes partly opposite, few-lobed or entire. Capitula solitary, pedunculate, radiate. Receptacle paleate; paleae with a central resin canal. Ray florets neuter; limb white or yellow. Disc corolla 5-lobed, adaxially slightly saccate, with a rather long tube and a partly enervate limb. Cypselas with 1 adaxial and 2 lateral vascular strands, thin-walled, with myxogenic cells. Pappus absent.

Distribution. N. Africa in Morocco and Algeria. - 2 spp.
Mecomischus with two rather different species appears to be related to Chamaemelum, Cladanthus, and Rhetinolepis. They all have thin-walled, obovoid, myxogenic cypselas.
M. halimifolius (Munby) Hochr.

M. pedunculatus (Cosson \& Durieu) Maire

54. CHAMAEMELUM Miller in Gard. Dict. abr. 4th edn. (1754). Lectotype: C. nobile (L.) All. Ormenis (Cass.) Cass.
Annual or perennial herbs or half-shrubs. Leaves alternate, pinnatifid or variously pinnatisect. Capitula solitary or laxly corymbose, pedunculate, radiate, disciform, or discoid. Receptacle conical or elongated, paleate; paleae flat or often canaliculate, sometimes enclosing florets, often with a central resin canal, glabrous or abaxially pilose. Ray florets female, fertile or sterile; limb white or yellow. Disc corolla 5-lobed, basally saccate around the cypsela especially adaxially, with a rather long tube and a more or less distinct, generally enervate limb. Cypselas obovoid, with 1 adaxial and 2 lateral very thin ribs with vascular strands, thin-walled and covered with myxogenic cells in longitudinal rows. Pappus absent. Amides and particular thiophene derivatives present.

Distribution. Mediterranean, from the Canaries in N . Africa and S. Europe to the Middle East. - 6 spp.
The species of Chamaemelum were formerly placed in Ormenis or as species of Anthemis s. l. The generic name Chamaemelum of Miller is prior to Cassini's Ormenis, however. Cassini distinguished Ormenis from Anthemis by the basally saccate corolla. Later, it has also been shown that Ormenis has a specialized cypsela morphology, different from that of Anthemis (Briquet, 1916). C. fuscatum, C. mixtum, and C. nobile (including Ormenis santolinoides (Munby) Harling) also differ in embryology; in contrast to Anthemis they have the normal monosporic type of embryo sac development (Harling, 1960). When Miller described the genus he included several species now in other genera. Only two of his species are presently classified in Chamaemelum, C. nobile and C. mixtum. The former is more well-known and the latter is the type of Ormenis, hence our choice of C. nobile as type species of Chamaemelum. In Flora europaea (Tutin et al., 1976) the three widespread species are recognized under Chamaemelum (C. fuscatum, C. mixtum, C. nobile). There are also a number of North African species described from Morocco. Those that seem distinct are transferred from Ormenis to Chamaemelum following recent treatments of Benedí González (1986, 1988a, b; see list of species). The North African species are still in need of revision.
C. eriolepis (Cosson ex Maire) Benedí.
${ }^{*}$ C. flahaulti (Emb.) Benedí.
C. fuscatum (Brot.) Vasc. (Anthemis fuscata Brot., Anthemis praecox Link, Ormenis praecox (Link) Briq. \& Cavill.)
C. mixtum (L.) All. (Anthemis mixta L., Ormenis mixta (L.) Dumort.)
C. nobile (L.) All. (Anthemis nobilis L., Ormenis nobilis (L.) Gay)
C. scariosum (Ball) Benedí.

55. RHETINOLEPIS Cosson in Bull. Soc. bot. Fr. 3: 707 (1856). Type species: R. lonadioides Cosson.

An annual herb, branched from the base; hairs dolabriform. Leaves alternate, entire or few-lobed. Capitula solitary or few closely together, almost sessile, comparatively small, discoid. Receptacle paleate; paleae scarious with a central resin canal, abaxially pilose. Corolla 5-lobed, adaxially shal-
lowly saccate, with a narrow tube and a distinct, enervate limb. Cypselas narrowly obovoid, without ribs, with 1 adaxial and 2 lateral vascular strands, thin-walled, covered with myxogenic cells in longitudinal rows. Pappus absent.

Distribution. N. Africa in Algeria, Tunisia, and Libya. Monotypic.

Rhetinolepis is a curious small annual very different in habit from its relatives Chamaemelum, Cladanthus, and Mecomischus. However, they have a similar specialized cypsela morphology, and many floral characters in common. In North African floras Rhetinolepis lonadioides is also often called Ormenis lonadioides (Cosson) Maire.

56. CLADANTHUS Cass. in Bull. Sci. Soc. philom.

Paris 1816: 199 (1816). Type species: C. arabicus (L.) Cass.

An annual herb with branches in whorls below the first capitulum. Leaves alternate, below the capitula whorled, pinnatisect. Capitula solitary, sessile, radiate. Receptacle conical, paleate and pilose; paleae canaliculate and halfenclosing cypsela and basal part of corolla, with a central resin canal, pilose on both sides. Ray florets female, sterile; limb yellow, with comparatively large apical lobes. Disc corolla 5-lobed, basally saccate around the cypsela especially adaxially; lobes with acute appendices. Cypselas obovate, laterally flattened with 1 lateral and 2 marginal very thin ribs with vascular strands, thin-walled and covered with myxogenic cells in longitudinal rows. Pappus absent. Amides and particular thiophene derivatives present.
Distribution. Mediterranean, S. Spain and N. Africa in Morocco, Algeria, Tunisia, and Libya. - Monotypic.

This species is known as a relative of Chamaemelum, which has relatively plesiomorphic characters when compared to Cladanthus. The sister group, however, appears to be Rhetinolepis, with small discoid capitula. Thus although the two genera seem rather different they both have a similar branching habit and sessile capitula.

8. ANTHEMIDINAE Dumort. emend. Bremer

 \& Humphries, emend. nov. (Dumortier, Fl. belg.: 69 (1827) ('Anthemideae')). Type species: Anthemis maritima L.Herbae annuae vel perennes vel suffrutices. Capitula solitaria vel laxe corymbosa. Receptaculum paleaceum vel interdum epaleaceum. Corolla flosculi disci 5- vel raro 4-lobata tubo plerumque basaliter incrassato. Cypselae plerumque turbinatae parietibus crassis. Pappus coroniformis vel auriculiformis vel nullus. Sacculus embryonis tetrasporus.

Annual or perennial herbs or suffrutices. Leaves pinnatisect to variously lobed, rarely entire. Capitula solitary or laxly corymbose, radiate or rarely disciform or discoid. Receptacle convex to narrowly conical, paleate or sometimes epaleate. Ray floret limb white or yellow. Disc corolla 5- or rarely 4-lobed; tube mostly basally swollen in fruit. Cypselas generally turbinate and thick-walled, rarely with myxogenic cells. Pappus a corona, an auricle, or absent. Embryo sac tetrasporic.

Distribution (Table 18). Eurasia, N. and E. Africa, some

Table 18 General distribution of Anthemidinae, Chrysantheminae, and genera. $x=$ indigenous, $o=$ introduced.
N. Eur- SW S. N. S. Austr. S. Am. Asia Asia Eur. Afr. Afr.N.Zeal.Am.

Anthemidinae	o	x	x	x	x	o		
\quad Anthemis	o	x	x	x	x	o	o	o
\quad Nananthea				x				
Chrysantheminae	x	x	x	x	o	o	o	
\quad Chrysanthemum	x	x	x	x	o	o	o	
Heteranthemis				x	x			
Ismelia Argyranthemum				x				
				x				

Anthemis species widespread as weeds also in the S . hemisphere. - 2 genera, 213 spp.

Traditionally subtribe Anthemidinae represents all Anthemideae with a paleate receptacle. In our classification it is essentially restricted to the large genus Anthemis, the immediate relatives of which are unknown. Chrysantheminae (s. s.), also with thick-walled cypselas, is a possible sister group candidate. We have also provisionally included the isolated monotypic Nananthea in Anthemidinae. The reasons are given below in the discussion of Nananthea.

The cladogram also includes the Chrysantheminae. If the matrices of both subtribes are analysed together, Nananthea appears as the sister group to Chrysantheminae rather than to Anthemis. Nananthea and the Chrysantheminae share the annual habit and absence of pappus. We would consider the tetrasporic embryo sac uniting Nananthea and Anthemis a stronger character than these two characters together, however. The possible relationship of Nananthea to Anthemis is further discussed under the former genus.
Clades and characters - Fig. 9, Tables 2, 19.

Fig. 9 Cladogram of the Anthemidinae and the Chrysantheminae produced by the ie option in Hennig86. Cladogram length $=23$, consistency index $=86$, retention index $=76$.

Table 19 Data matrix for the Anthemidinae and Chrysantheminae. 1 $=$ presence, $0=$ absence, ? = missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, a $=$ polymorphic but scored as the apomorphic condition.

	11111		11
	145057655	714807742712128577	15763461321
	532718112	51528122105610225726	30065414616
57.Anthemis	alaa111a1	laalappp000000000000	?00ppppp000
58. Nananthea	a1aa1?100	$1 ? 0001 \mathrm{a} 1000000000000$????0000p00
59.Chrysanthemum	a10a1?1a1	00000101111000000000	????00000p0
60.Heteranthemis	a1001?1a1	10000101110111110000	????0000000
61.Ismelia	11a01?111	00000101110110001100	????0000000
62.Argyranthemum	11a01?101	00000001110110000 p 11	????00000pp

Clade An1 - subtribe Anthemidinae
175 Embryo sac tetrasporic.

Anthemis

11 Plants with dolabriform hairs. Many species of Anthemis have T- or Y-shaped hairs (Napp-Zinn \& Eble, 1980), which occur also in Artemisiinae, Leucantheminae and some genera of Achilleinae.

45 Receptacle paleate. Some species of Anthemis, subgenus Ammanthus, have epaleate receptacles.

82 Disc corolla tube thickened in fruit. A thickened corolla tube is characteristic also of many genera in Achilleinae, Leucantheminae and Matricariinae.

108 Cypselas turbinate.

Nananthea

1 Plants annual.

51 reversed. Floral parts without resin canals.
72 Disc corolla 4-lobed. This character occurs also within Thaminophyllinae and Matricariinae.

152 reversed. Cypsela wall not several cell layers thick, not partially or completely sclerified.

172 Pappus absent in ray and disc cypselas.
57. ANTHEMIS L., Sp. pl.: 893 (1753). Type species: A. maritima L.

Annual or perennial herbs or half-shrubs; indumentum frequently of dolabriform hairs. Leaves alternate, pinnatisect to variously lobed, occasionally entire. Capitula solitary or laxly corymbose, pedunculate, radiate or discoid. Receptacle convex to narrowly conical, paleate, rarely basally or totally epaleate; paleae scarious and oblong or subulate, truncate to acute to acuminate, occasionally with a central resin canal. Ray florets female, fertile, or neuter; limb white or rarely yellow or reddish. Disc corolla 5-lobed, yellow or rarely reddish; tube basally much swollen in fruit, rarely pilose; lobes rarely with acute appendices. Cypselas generally turbinate, smooth to prismatic to c. 10 -ribbed, sometimes dorsiventrally compressed, sometimes tuberculate, thick-walled, rarely with myxogenic cells. Pappus a shallow, often adaxially more developed corona, or an adaxial auricle, or absent. Embryo sac tetrasporic.

Distribution: Europe, Asia, and N. Africa, mainly in S. Europe and SW Asia, one species also in tropical E. Africa (A. tigrensis) and 2-3 species widespread as weeds also in N . America and the S . hemisphere (A. arvensis, A. cotula, A. tinctoria). - 211 spp.

The large genus Anthemis is, despite its size, morphologically homogeneous and the numerous species stick together in a number of groups. As a whole the genus also appears to be monophyletic based on its turbinate (obconical, in some derived species more obovoid), thick-walled fruits and the invariably basally swollen corolla tube. The south-east European species with an epaleate receptacle, hence earlier classified in a separate genus Ammanthus, have now been transferred to Anthemis (Greuter, 1968). Ammanthus is treated by Fernandes in Flora europaea (Tutin et al., 1976) as a subgenus and it represents a monophyletic group of derived species within Anthemis. The infrageneric classification of Anthemis follows the common pattern with recognition of a
number of apomorphic sections and subgenera in addition to a plesiomorphic and probably paraphyletic subgenus Anthemis. Yavin $(1970,1972)$ has proposed an elaborate infrageneric classification of Anthemis. She also revised section Maruta.

Anthemis was typified with A. maritima by Britton \& Brown (1913). Later Green (in Hitchcock \& Green, 1929) proposed A. arvensis as type species, since it is a well-known species also occurring in Sweden, the home-country of Linnaeus. Both species fit Linnaeus' generic description in Genera plantarum (Linnaeus, 1757). Linnaeus did not coin the generic name; it was adopted from Micheli (1729) who included A. maritima but not A. arvensis. Hence, we consider the original typification with A. maritima by Britton \& Brown to be the correct choice.
A. aaronsohnii Eig. Middle East.

* A. abagensis Fed. Caucasus.
A. abrotanifolia (Willd.) Guss. Greece.
A. aciphylla Boiss. Turkey.
*A. adonidifolia Boiss. Turkey.
*A. aeolica Lojac. Italy.
A. aetnensis Schouw in Sprengel. Italy.
A. alpestris (Hoffsgg \& Link) R. Fernandes. SW Europe.
A. altissima L. S. Europe, Krym, Turkey, Caucasus, Iraq, Iran, Afghanistan, C. Asia.
A. amblyolepis Eig. Turkey, Cyprus, Middle East.
A. ammanthus Greuter. Greece.
A. ammophila Boiss. \& Heldr. in Boiss. Turkey.
A. anatolica Boiss. Greece, Turkey.
A. anthemiformis (Freyn \& Sint.) Grierson. Turkey.
*A. antilibanotica Eig. Middle East.
A. antitaurica Grierson. Turkey.
A. arenicola Boiss. Turkey.
*A. argyrophylla (Hal. \& Georgiev) Velen. Bulgaria.
A. armeniaca Freyn \& Sint. Turkey.
A. arvensis L. Europe, N. Africa, W. Asia, also widespread as a weed in N. America, S. Africa, Australia and New Zealand.
*A. atropatana Iranshar. Iran.
A. auriculata Boiss. SE Europe, Turkey.
A. austriaca Jacq. C. and E. Europe, Krym, Turkey, Caucasus, Iran.
A. austro-iranica Rech. f., Aellen \& Esfand. Iran.
A. bornmuelleri Stoy. \& Acht. (A. galilaea Eig). Egypt, Middle East.
*A. bourgaei Boiss. \& Reuter. Spain, Morocco.
A. boveana Gay. N. Africa in Morocco, Algeria and Libya.
*A. brachmannii Boiss. \& Heldr. in Boiss. Greece.
A. brachycarpa Eig. Middle East.
A. brachystephana Bornm. \& Gauba. Iran.
A. brevicuspis Bornm. (A. feinbruniae Eig., A. rayatensis Eig). Middle East, Iraq, Iran.
*A. breviradiata Eig. Middle East.
*A. bulgarica N. N. Thin. Bulgaria.
*A. bushehrica Iranshahr. Iran.
A. calcarea Sosn. Turkey, Caucasus.
A. candidissima Willd. ex Sprengel. Caucasus, Iran, C. Asia.
A. carpatica Waldst. \& Kit. ex Willd. C. and S. Europe.
A. chia L. SE Europe, Middle East, Egypt.
A. chrysantha Gay. Spain, Algeria.
A. coelopoda Boiss. SE Europe, Turkey, Middle East, Iran, Afghanistan.
A. cornucopiae Boiss. Middle East.
A. corymbulosa Boiss. \& Hausskn. in Boiss. Middle East.
A. cotula L. Europe, N. Africa, W. Asia, also widespread as a weed in America, S. Africa, Australia and New Zealand.
${ }^{*}$ A. cretacea Zefirov. Krym, Caucasus.
A. cretica L. (A. anahytae Woronow ex Sosn., A. iberica M. Bieb., A. montana L., A. panachaica Hal., A. pindicola Heldr. ex Hal., A. ptarmiciformis K. Koch, A. tempskyana Freyn \& Sint.). S. Europe, N. Africa, Turkey, Middle East, Iran.
A. cuneata Huber-Mor. \& Reese. Turkey.
*A. cypria Boiss. Cyprus.
A. cyrenaica Cosson. Libya.
A. damascena Boiss. \& Gaill. Middle East.
A. davisii Yavin. Turkey.
A. debilifolia Eig. Middle East.
A. deserticola H. Kraschen. \& Popov. C. Asia.
A. deserti-syriaci Eig. Middle East.
*A. didymaea Mout. Middle East.
A. dipsacea Bornm. Turkey.
*A. dubia Steven. Krym.
A. edumea Eig. Middle East.
A. eliezrae Eig. Middle East, Egypt.
A. emasensis Eig. Middle East.
A. emiliae Sosn. Caucasus.
A. filicaulis (Boiss. \& Heldr.) Greuter. Greece.
A. fimbriata Boiss. Turkey.
A. flexicaulis Rech. f. Greece.
A. freitagii Iranshahr. Afghanistan.
A. fruticulosa M. Bieb. Caucasus.
A. fulvida Grierson. Turkey.
A. fumariifolia Boiss. Turkey.
*A. fumarioides Hochst. Middle East.
*A. fungosa Boiss. \& Hausskn. Iran.
A. gaudium-solis Velen. Bulgaria.
A. gayana Boiss. Iran.
A. gerardiana Jordan. France.
A. gilanica Boiss. Iran.
*A. gilletti Iranshahr. Iraq, Iran.
A. glaberrima (Rech. f.). Greuter. Greece.
A. glareosa Durieu \& Barratte. Libya.
*A. gracilis Iranshahr. Iran.
A. grossheimii Sosn. Caucasus.
A. halophila Boiss. \& Bal. in Boiss. Turkey.
${ }^{*}$ A. hamrinensis Iranshahr. Iraq.
A. handel-mazzettii Eig. Middle East.
A. haussknechtii Boiss. \& Reuter in Boiss. Syria, Iraq, Iran.
A. hebronica Boiss. \& Kotschy. Middle East, Egypt.
A. hemistephana Boiss. Middle East, Iran.
${ }^{*}$ A. hermonis Eig. Middle East.
${ }^{*} A$. hinkovae N. N. Thin. Bulgaria.
A. hirtella Winkler. C. Asia.
A. homalolepis Eig. Middle East.
A. hyalina DC. Turkey, Middle East, Iraq, Iran.
A. hydruntina Groves. Italy.
A. indurata Del. Middle East, N. Africa in Egypt and Libya.
A. ismelia Lojac. Italy.
*A. jailensis Zefirov. Krym.
${ }^{*}$ A. jordanovii Stoy. \& Acht. Bulgaria.
A. kandaharica Iranshahr. Afghanistan, Pakistan.
${ }^{*}$ A. karabaghensis Mikheev. Caucasus.
A. kitanovii N. N. Thin. Bulgaria.
A. kitenensis N. N. Thin. Bulgaria.
A. kotschyana Boiss. Turkey, Middle East, Iraq, Iran.
*A. krugeriana Pampan. Libya.
*A. kurdica Iranshahr. Iraq.
*A. kuzmanovii N. N. Thin. Bulgaria.
A. laconica R. Franzén. Greece.
*A. leptophylla Eig. Iraq, Iran.
A. leucanthemifolia Boiss. \& Blanchet. Middle East, Egypt.
A. leucolepis Eig. Middle East.
*A. linczevskyi Fed. C. Asia.
*A. lithuanica (DC.) Besser ex Trautv. Europe in Lithuania and Russia.
A. lorestanica Iranshahr. Iran.
A. lyonnetioides (Boiss. \& Kotschy) Boiss. Middle East.
*A. macedonica Boiss. \& Orph. in Boiss. SE Europe.
A. macrantha Heuffel. SE Europe.
*A. macroglossa Sommier \& Levier. Caucasus.
A. maris-mortui Eig. Middle East.
*A. maris-nigri Fed. Caucasus.
A. maritima L. SW Europe, N. Africa.
*A. markhotensis Fed. Caucasus.
A. marschalliana Willd. Caucasus.
A. mauritiana Maire \& Sennen. Morocco.
A. mazandaranica Iranshahr. Iran.
A. melampodina Del. (A. deserti Boiss.) Middle East, Egypt.
A. melanacme Boiss. \& Hausskn. in Boiss. Turkey, Middle

East.
A. melanoloma Trautv. Turkey.
*A. meteorica Hausskn. Greece.
A. micrantha Boiss. \& Hausskn. Iraq.
A. microcephala (Schrenk) B. Fedtsch. (A. straussii Bornm.,
A. tenuiflora Gilli). C. Asia, Iraq, Iran, Afghanistan.
A. microlepis Eig. Middle East.
A. microsperma Boiss. \& Kotschy. Middle East, Egypt.
*A. mirheydari Iranshahr. Iran.
A. moghanica Iranshahr. Iran.
*A. monantha Willd. Krym.
*A. monilicosta Pomel. N. Africa in Morocco, Algeria and Libya.
A. muricata (DC.) Guss. Italy.
*A. nabataea Eig. Middle East.
A. odontostephana Boiss. (A. tubicina Boiss. \& Hausskn. in Boiss.). Iran, C. Asia.
*A. orbelica Pancic. Bulgaria.
A. orientalis (L.) Degen (A. pectinata (Bory \& Chaub.) Boiss. \& Reuter). Greece, Turkey.
A. oxylepis (Boiss.) Boiss. Turkey.
A. palestina Reuter in Boiss. (A. melanolepis Boiss., A. syriaca Bornm.). Turkey, Cyprus, Middle East, SE Europe.
A. parnassica (Boiss. \& Heldr.) R. Fernandes. SE Europe.
A. parnesia Boiss. \& Heldr. in Boiss. Greece.
*A. parviceps Dobrocz. \& Fed. Krym.
A. parvifolia Eig. Middle East.
*A. patentissima Eig. Middle East.
A. pauciloba Boiss. Turkey, Iraq.
A. pedunculata Desf. N. Africa in Morocco, Algeria and Libya.
A. persepolitana Boiss. Iraq, Lebanon, Syria.
A. persica Boiss. Iran.
A. pestalozzae Boiss. Turkey.
A. plebeia Boiss. \& Noë. Iraq.
*A. plutonia Meikle. Cyprus.
A. pseudocotula Boiss. (A. behboudiana Rech. f. \& Esfand.). Turkey, Cyprus, Middle East, Iraq, Iran, N. Africa in Egypt and Libya.
A. punctata Vahl. Italy, N. Africa in Morocco, Algeria and Tunisia.
*A. pungens Yavin. Turkey.
A. rascheyana Boiss. Middle East.
*A. regis-borisii Stoy. \& Acht. Bulgaria.
A. retusa Del. Egypt.
${ }^{*}$ A. rhodensis Boiss. Turkey.
*A. rhodocentra Iranshahr. Iran, Afghanistan, Pakistan.
A. rigida (Sibth. \& Smith) Boiss. \& Heldr. SE Europe,

Turkey, Cyprus.
A. rosea Smith in Sibth. \& Smith. Turkey.
A. rumelica (Velen.) Stoy. \& Acht. Bulgaria.
A. ruthenica M. Bieb. C. and SE Europe, Caucasus.
A. sabulifolia Pomel. N. Africa.
A. saguramica Sosn. Caucasus.
A. samuelssonii Rech. f. Middle East.
A. sancti-johannis Turrill. Bulgaria.
*A. saportana Albov. Caucasus.
A. scaettae Pampan. Libya.
A. scariosa Banks \& Sol. in Russell. Turkey, Middle East, Iraq, Iran.
${ }^{*}$ A. schischkiniana Fed. Caucasus.
A. schizostephana Boiss. \& Hausskn. Iraq, Iran.
A. scopulorum Rech. f. Greece.
A. scrobicularis Yavin. Middle East.
A. secundiramea Biv. SW Europe, N. Africa in Algeria and Tunisia.
A. segetalis Ten. (A. brachycentros Gay ex W. Koch). S. Europe.
A. semiensis Pichi-Serm. Ethiopia.
A. sibthorpii Griseb. Greece.
A. sintenisii Freyn. Turkey.
A. sosnovskyana Fed. Caucasus.
A. spruneri Boiss. \& Heldr. in Boiss. Greece.
A. sterilis Steven. Krym.
A. stiparum Pomel. N. Africa.
*A. stribrnyi Velen. Bulgaria.
*A. susiana Náb. Iraq, Iran.
A. talyschensis Fed. Caucasus, Iran.
*A. taubertii Durieu \& Barratte. Libya.
A. tenuicarpa Eig. Middle East.
A. tenuiloba (DC.) R. Fernandes. SE Europe.
A. tigrensis Gay ex A. Richards. E. Africa.
A. tinctoria L. (A. debilis Fed., A. euxina Boiss., A. subtinctoria Dobrocz.). Europe, W. and C. Asia, also naturalized in N. America.
A. tomentella Greuter. Greece.
A. tomentosa L. (A. peregrina L.). SE Europe, Turkey.
${ }^{*}$ A. tranzcheliana Fed. Krym.
A. tricolor Boiss. Cyprus.
A. tricornis Eig. Turkey.
A. tripolitana Boiss. \& Blanchet in Boiss. Middle East.
A. triumfettii (L.) DC. in Lam. \& DC. (A. dumetorum Sosn., A. khorassanica Rech. f., A. rigescens Willd.). S. Europe, Turkey, Caucasus, Iran.
A. trotzkiana Claus ex Bunge. S. Russia, C. Asia.
A. tuberculata Boiss. Spain.
*A. virescens Velen. Bulgaria.
A. wallii Huber-Mor. \& Reese. Turkey.
*A. werneri Stoy. \& Acht. Greece.
A. wettsteiniana Hand.-Mazz. Iraq, Iran.
A. wiedemanniana Fischer \& C. Meyer. Caucasus, Turkey.
A. woronowii Sosn. Caucasus.
A. xylopoda O. Schwarz. Turkey.
A. yemenensis Podl. Yemen.
*A. zephyrovii Dobrocz. Krym.
A. zoharyana Eig. Middle East, Egypt.
A. zyghia Woronow. Caucasus.
58. NANANTHEA DC., Prodr. 6: 45 (1838). Type species: N. perpusilla (Lois.) DC.
A delicate, somewhat succulent, annual herb. Leaves alternate, pinnatifid, with obovate lobes. Capitula solitary, longpedunculate, very small ($2-5 \mathrm{~mm}$ diam.), radiate or disciform. Involucre of $5-10$ wide bracts in 1 to 2 rows. Receptacle conical, epaleate. Ray florets female, fertile, with or without a white lamina. Disc corolla 4-lobed, with a short tube and large lobes. Cypselas obovoid, with myxogenic cells; ray cypselas with 2 lateral vascular strands; disc cypselas with 2 lateral, 1 adaxial and 1 pseudolateral vascular strand. Pappus absent. Embryo sac tetrasporic.
Distribution. S. Europe, Corsica and Sardinia. - Monotypic.

Nananthea is a genus of uncertain position. Traditionally it has been included in a widely circumscribed and heterogeneous Cotula group but it shares no synapomorphies with the Cotula group, which is part of subtribe Matricariinae, as understood here. Nananthea is here provisionally placed together with Anthemis, following a suggestion by Reitbrecht (1974). It could be a highly specialized Anthemis derivative, related to part of Anthemis, possibly subgenus Ammanthus. Both genera have tetrasporic embryo sacs. This also occurs in Tanacetum, Tripleurospermum, and Heteranthemis, but Nananthea is hardly reminiscent of these genera.

9. CHRYSANTHEMINAE Less. emend. Bremer \& Humphries, emend. nov. (Lessing in Linnaea 6: 167 (1831) ('Chrysanthemeae')). Type species: Chrysanthemum coronarium L .

Herbae annuae vel perennes vel suffrutices vel frutices. Capitula solitaria vel laxe corymbosa. Bracteae involucri latae, plurinerves. Receptaculum epaleaceum. Cypselae parietibus crassis, heteromorphae; cypselae flosculorum radii triquetrae, alatae; eae flosculorum disci plerumque lateraliter compressae et abaxialiter adaxialiterque alatae vel raro teretes ad prismaticae. Pappus nullus.
Annual or perennial herbs, half-shrubs or shrubs. Leaves serrate-dentate-pinnatifid to variously dissected. Capitula solitary or laxly corymbose, pedunculate, radiate. Involucral bracts wide, many-veined. Receptacle convex to conical, epaleate. Ray floret limb white and/or yellow. Disc corolla 5-lobed, yellow or rarely red. Cypselas thick-walled, without myxogenic cells, heteromorphic; ray cypselas triquetrous, winged; disc cypselas generally laterally flattened and abaxially and adaxially winged, or rarely terete to prismatic. Pappus absent.
Distribution (Table 18). Eurasia, N. Africa and Macaronesia, Chrysanthemum coronarium widespread as a weed also in the S. hemisphere. -4 genera, 28 spp.

Traditionally subtribe Chrysantheminae comprises all of the Anthemideae species with an epaleate receptacle. As circumscribed here it is a small and homogeneous taxon. The close relationship between Chrysanthemum s. s. and the three
other genera of this subtribe has also been recognized by earlier authors and is discussed by Humphries (1976).

Clades and characters - Fig. 9, Tables 2 and 19.
Clade Ch1 - subtribe Chrysantheminae
1 Plants annual. Argyranthemum consists of shrublets or half-shrubs, here considered a secondary development within the subtribe. A shrubby habit is commonly evolved in island groups.
41 Involucral bracts wide, flabelliform. This character also occurs in several genera of other subtribes.

120 Cypselas heteromorphic; ray cypselas triquetrous, winged; disc cypselas terete to prismatic to laterally flattened.
172 Pappus absent in ray and disc cypselas.

Chrysanthemum

52 reversed. Ray floret limb not white, but yellow.
75 Disc corolla lobes with central resin sacs.
Clade Ch2
107 reversed. Cypselas not terete to weakly angled, but acutely angled.

116 Disc cypselas laterally flattened.
121 Disc cypselas abaxially and adaxially winged.

Heteranthemis

10 Plants covered with viscid hairs.
52 reversed. Ray floret limb not white, but yellow.
122 Cypsela wings as apical spines.
175 Embryo sac tetrasporic. The embryo sac of Ismelia is monosporic (Harling, 1951).
182 Flavonol 5-glycosides present. Most of the related genera have not been investigated chemically.

Ismelia

55 Ray floret limb deeply emarginate.
77 Disc corolla red.

Argyranthemum

1 reversed. See clade Ch1.
2 Plants shrubby. See clade Ch1 under character 1.
51 reversed. Floral parts without resin canals.
176 Embryo sac disporic.
59. CHRYSANTHEMUM L., Sp. pl.: 887 (1753).

Type species: C. coronarium L.
Annual herbs. Leaves alternate, deeply serrate-dentate and pinnatifid to pectinate, somewhat amplexicaul. Capitula solitary or laxly corymbose, pedunculate, radiate. Involucral bracts wide, many-veined, with resin canals. Receptacle convex, epaleate. Ray florets female, fertile; limb yellow or white distally, many-veined. Ray cypselas triquetrous, laterally winged, adaxially with a narrow wing or ribbed; pappus absent. Disc corolla 5-lobed; lobes with central resin sacs. Disc cypselas prismatic with a narrow adaxial wing or terete,
with a thick undulating wall, thus apparently ribbed; pappus absent.

Distribution. Europe, Asia and N. Africa, C. coronarium widespread as a weed. -2 spp.

The adaxial cypsela wings of C. coronarium are similar to those in Heteranthemis, Ismelia, and Argyranthemum, whereas C. segetum has terete disc cypselas and only laterally winged ray cypselas. The adaxial cypsela wing is conceived as a parallelism, since the two species of Chrysanthemum are united for example by their corolla lobe resin sacs.
C. carinatum Schousboe is more closely related to Heteranthemis and Argyranthemum than to the two Chrysanthemum species adopted here, and thus it is transferred to Ismelia.
C. coronarium L.
C. segetum L.
60. HETERANTHEMIS Schott in Isis, Oken 1818 (5): 822 (1816). Type species: H. viscidehirta Schott.

An annual herb covered with viscid glandular hairs. Leaves alternate, serrate-dentate to pinnatifid. Capitula solitary or laxly corymbose, pedunculate, radiate. Involucral bracts wide, many-veined, with resin canals. Receptacle convex, epaleate. Ray florets female, fertile; limb yellow, manyveined. Ray cypselas triquetrous, laterally and adaxially winged; wings projected to apical spines; pappus absent. Disc corolla 5 -lobed. Disc cypselas laterally flattened, winged; adaxial wing projected to an apical spine; pappus absent. Embryo sac tetrasporic.

Distribution. SW Europe in Spain and Portugal, N. Africa in Morocco and Algeria. - Monotypic.
This species, also known as Chrysanthemum viscidehirtum (Schott) Thell., is distinguished from Ismelia and Argyranthemum by its pubescence of viscid glandular hairs and the apical spines on the cypsela wings.
61. ISMELIA Cass. in Dict. Sci. Nat. 41: 40 (1826).

Type species: I. versicolor Cass. (I. carinata
(Schousboe) Schultz-Bip.).
An annual herb. Leaves alternate, pinnatisect. Capitula solitary or laxly corymbose, pedunculate, radiate. Involucral bracts wide, many-veined, with resin canals. Receptacle convex to conical, epaleate. Ray florets female, fertile; limb yellow, basally reddish or white, many-veined, deeply emarginate. Ray cypselas triquetrous, laterally and adaxially winged; pappus absent. Disc corolla 5-lobed, red to purple. Disc cypselas laterally flattened, winged; pappus absent.
Distribution. N. Africa in Morocco but frequently escaped from cultivation. - Monotypic.

This handsome species, frequently cultivated as an ornamental, is commonly known as Chrysanthemum carinatum Schousboe. It is, however, more closely related to Heteranthemis and Argyranthemum than to Chrysanthemum coronarium and Chrysanthemum segetum, the two species here retained in that genus. Ismelia, Heteranthemis, and Argyranthemum form a monophyletic group based on their laterally compressed disc cypselas and their especially strongly developed cypsela wings on the adaxial side. Interestingly, SchultzBipontinus (1844b) expanded the concept of Ismelia to
include various Canary Island endemics of Argyranthemum (see Humphries, 1976, for details). Argyranthemum, however, forms a monophyletic group, so Ismelia is related to Argyranthemum as a whole rather than to part of it. Uniting Ismelia and then by consequence also Heteranthemis with Argyranthemum because of their similar fruits is hardly desirable, since it necessitates recombination of all Argyranthemum specific names, Argyranthemum being the youngest name.
62. ARGYRANTHEMUM Webb ex Schultz-Bip. in Webb \& Berthelot, Hist. nat. Iles Canaries $3(2,2)$: 245, 258 (1844b). Type species: A. frutescens (L.) Schultz-Bip.
Shrublets or half-shrubs. Leaves alternate, variously dissected. Capitula solitary or laxly corymbose, pedunculate, radiate. Receptacle convex to conical, epaleate. Ray florets female, fertile; limb white, rarely yellow or pink, manyveined. Ray cypselas triquetrous, generally laterally and adaxially strongly winged, sometimes coalesced into groups; wings sometimes reduced, often apically projected to a pappus-like corona; true pappus absent. Disc corolla 5-lobed, yellow; lobes rarely reddish purple. Disc cypselas generally laterally flattened and adaxially and abaxially winged, sometimes prismatic to terete and wingless, sometimes coalesced with ray cypselas, apically often coroniform; true pappus absent. Embryo sac bisporic.

Distribution. Macaronesia in the Canary Islands, Madeira (A. dissectum, A. haematomma, A. pinnatifidum), and the Salvage Islands (A. thalassophilum). - 24 spp .

Argyranthemum was revised by Humphries (1976). As already pointed out by him, it is related to Ismelia and Heteranthemis. Argyranthemum has, unlike these genera, evolved into many species with even more specialized sometimes coalesced fruits often with folded wings or sometimes secondarily wingless (Borgen, 1972). A new species, A. sundingii, was described by Borgen (1980) and a study of variation within A. pinnatifidum was undertaken by Rustan (1981).
A. adauctum (Link) Humphries
A. broussonetii (Pers.) Humphries
A. callichrysum (Svent.) Humphries
A. coronopifolium (Willd.) Humphries
A. dissectum (Lowe) Lowe
A. x escarrei (Svent.) Humphries
A. filifolium (Schultz-Bip.) Humphries
A. foeniculaceum (Willd.) Webb ex Schultz-Bip.
A. frutescens (L.) Schultz-Bip.
A. gracile Schultz-Bip.
A. haematomma (Lowe) Lowe
A. haouarytheum Humphries \& Bramwell
A. hierrense Humphries
A. jacobiifolium Kunkel
A. lemsii Humphries
A. lidii Humphries
A. maderense (D. Don) Humphries
A. pinnatifidum (L. f.) Lowe
A. sundingii Borgen
A. sventenii Humphries \& Aldridge
A. tenerifae Humphries
A. thalassophilum (Svent.) Humphries
A. webbii Schultz-Bip.
A. winteri (Svent.) Humphries

10. LEUCANTHEMINAE Bremer \& Humphries, subtrib. nov.

Type species: Leucanthemum vulgare Lam.

Herbae annuae vel perennes vel interdum suffruticosae. Folia saepe serrata-dentata vel interdum pectinata-lobata, trifurcata vel integra. Capitula solitaria, pedunculata. Flosculi disci tubo plerumque incrassato. Cypselae plerumque 10(8-12) vel interdum pauciores costas praebentes, inter costas saepe lacunis vallecularibus et canalibus secretoriis et fasciculis vascularibus (Leucanthemum et genera sequentia), in costis plerumque cellulis mucilaginis, instructae. Pappus coroniformis vel adaxialiter auriculiformis vel nullus.

Annual or perennial herbs, sometimes suffruticose; indumentum frequently of dolabriform hairs. Leaves often serratedentate, sometimes pectinate-lobed, trifurcate or entire. Capitula solitary, pedunculate, generally radiate or sometimes discoid. Involucral bracts sometimes with dark brown margins, sometimes wide and flabelliform. Receptacle flat to conical, epaleate. Ray floret limb white, yellow or rarely reddish. Disc corolla 5-lobed or rarely 4-lobed; tube generally swollen in fruit. Cypselas mostly $10(8-12)$-ribbed, sometimes with fewer ribs, often with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs (Leucanthemum group of genera), generally with myxogenic cells along the ribs. Pappus a corona, an adaxial auricle, or absent.

Distribution (Table 20): Eurasia and N. Africa, mainly in the Mediterranean region, some Leucanthemum species widely introduced, also in N. America and the S. hemisphere. - 16 genera, 75 spp.

Leucantheminae consists of one well defined monophyletic subclade, the Leucanthemum group of genera, a smaller subclade comprised of Leucanthemopsis, Hymenostemma and Prolongoa, as well as a number of isolated genera of uncertain position, here provisionally included in this subtribe.

The Leucanthemum group of genera (71-78; see Fig. 10), are all characterized by their specialized cypsela wall with vallecular lacunae, secretory canals, and vascular strands. Their status as a group has been recognized by several earlier authors (for example, see Briquet, 1916).

Leucanthemopsis is apparently allied to the two Iberian monotypic genera Hymenostemma and Prolongoa, a relationship that hitherto has not been clearly recognized.

The subtribal description above does not cover all divergent characters of the genera, but applies mainly to the Leucanthemum and Leucanthemopsis groups.

A relationship between Leucanthemopsis and Leucanthemum has been suggested several times, e. g. by Heywood (1954, 1976). It is supported by presence of flavonol 5 -glycosides in both genera. They are also found in Coleostephus and Plagius and constitute a possible synapomorphy for the Leucanthemum and Leucanthemopsis groups. Other genera of these groups have not been investigated chemically, as far as we know.

Included in Leucantheminae are also a number of odd, mainly monotypic genera of uncertain affinity. Lepidopho-

Table 20 General distribution of Leucantheminae and genera. $x=$ indigenous, $o=$ introduced.

	N.Am.	EurAsia	$\begin{aligned} & \text { C.\& } \\ & \text { Asia } \end{aligned}$	E.SW. Asia	S.Eur.	N.Afr.	S.Afr.	Austr. N.Zeal.	S.Am.
Leucantheminae	O	X	X	O	X	X	O	O	o
Lepidophorum					x				
Nipponanthemum			x						
Leucanthemella		x	x						
Nivellea						x			
Phalacrocarpum					x				
Leucanthemopsis		x			X	x			
Hymenostemma					X	X			
Prolongoa					x				
Leucanthemum	o	x		o	x	x	o	o	o
Rhodanthemum					x	x			
Leucoglossum					X	X			
Chlamydophora					x	x			
Chrysanthoglossum						x			
Glossopappus					x	X			
Coleostephus					x	x			
Plagius					x	x			

rum, Nipponanthemum, Leucanthemella, Nivellea and Phalacrocarpum are classified in this subtribe mainly because of their serrate-dentate leaves (not in Nivellea) but also on account of some floral similarities. These genera have 10(8-12)-ribbed cypselas as in the Leucanthemum group. An exception is Lepidophorum with 5 -ribbed cypselas. The positions of these genera are further discussed under each genus.

There is one most parsimonious cladogram produced from the data matrix. It differs from the cladogram presented by having Hymenostemma and Prolongoa as the sister group to Lepidophorum rather than to Leucanthemopsis. However, we have chosen the latter arrangement, which is one step longer. We consider the peculiar pappus (character 165) shared by Hymenostemma, Prolongoa and Leucanthemopsis a stronger character than the annual habit and the loss of brown involucral bracts together (characters 1 and 44), which the former two genera share with Lepidophorum.

Clades and characters - Fig. 10, Tables 2, 21.
Clade Le1 - subtribe Leucantheminae
11 Plants with dolabriform hairs. Most genera of Leucan-
theminae, notably those provisionally included in the early part of the account, have dolabriform hairs. The character occurs also in Artemisiinae, Anthemis (Anthemidinae), and some genera of Achilleinae. Possibly it is a synapomorphy at a lower level within the tribe.

Lepidophorum

1 Plants annual.
45 Receptacle paleate.
52 reversed. Ray floret limb not white, but yellow.
53 Ray floret limb golden yellow. Similar rays occur in subclade Le10 of the Leucanthemum group of genera.

133 Cypselas with costal resin canals or sacs.

Clade Le2

124 Cypselas with 10 (8-12) multicellular epicarpic ribs. Fewer ribs occur in most species of Leucanthemopsis and in Hymenostemma and Prolongoa.

Nipponanthemum

Fig. 10 Cladogram of the Leucantheminae produced by the $b b$ option in Hennig86. Cladogram length $=29$, consistency index $=58$, retention index $=79$.

Table 21 Data matrix for the Leucantheminae. $1=$ presence, $0=$ absence, ? $=$ missing data or not applicable, $p=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

2 Plants shrubby.

51 reversed. Floral parts without resin canals.

Leucanthemella

172 Pappus absent in ray and disc cypselas.

Clade Le3

82 Disc corolla tube thickened in fruit. This character is sometimes vaguely expressed and absent at least in Prolongoa.

Nivellea

1 Plants annual.

21 reversed. Leaves not serrate-dentate.
172 Pappus absent in ray and disc cypselas.

Clade Le4

44 Involucral bracts with dark brown margins. This character is absent in several genera (see cladogram) and present in many genera of other subtribes (Cancriniinae, Tanacetinae, Artemisiinae). It may be a synapomorphy at a lower level with reversals in several instances.

Phalacrocarpum

14 Leaves opposite.
104 Disc floret style-branches fused.
172 Pappus absent in ray and disc cypselas.
174 Testa epidermis cells thick-walled and dark reddish.

Clade Le5

182 Flavonol 5-glycosides present. In this subtribe only Leucanthemopsis, Leucanthemum, Coleostephus and Plagius have been investigated for these compounds.

Clade Le6
21 reversed. Leaves not serrate-dentate.
124 reversed. See clade Le2.
165 Pappus a scarious, flimsy corona.

Leucanthemopsis

There is no autapomorphy for this genus.
Clade Le7
1 Plants annual.
44 reversed. See clade Le4.

Hymenostemma

There is no autapomorphy for this genus.

Prolongoa

52 reversed. Ray floret limb not white, but yellow.
82 reversed See clade Le3.
103 Disc floret style-branches long-penicillate.
157 Cypsela wall with rod-shaped crystals in small packets.
171 Pappus absent in disc cypselas, but present in ray cypselas.
Clade Le8 - The Leucanthemum group of genera
134 Cypselas with vallecular secretory canals.
135 Cypselas with vallecular vascular strands.
166 Pappus adaxially long. In Chrysanthoglossum the pappus is coroniform and hardly longer adaxially.

Leucanthemum

11 reversed. Plants without dolabriform hairs.
184 Anthocyanin present in root tips.

Rhodanthemum

20 Leaves spathulate in outline, ternate to ternately pinnate.
21 reversed. Leaves not serrate-dentate.
126 Cypsela ribs protruding, narrow and somewhat wing-like.
Clade Le9
1 Plants annual. The character reverses in Plagius, which is perennial.
44 reversed. See clade Le4.

Clade Le10

110 Cypselas ellipsoid, small, c. 1 mm long.

Leucoglossum

171 Pappus absent in disc cypselas, but present in ray cypselas.

Chlamydophora

21 reversed. Leaves not serrate-dentate.
22 Leaves entire or apically tridentate.
35 Capitula discoid.
168 Pappus a large, scarious, adaxial but basally coroniform auricle, as long as the corolla or longer.

Clade Le 11

41 Involucral bracts wide, flabelliform. The character reverses in Plagius, where the involucral bracts are not flabelliform.
52 reversed. Ray floret limb not white, but yellow.
53 Ray floret limb golden yellow.
73 Disc corolla lobes with dorsal appendages.
Chrysanthoglossum
21 reversed. Leaves not serrate-dentate.
141 Cypselas with dense rows of myxogenic cells also on the corona.
166 reversed. See clade Le8.
Clade Le12
109 Cypselas arcuate.
125 Cypsela ribs basally fused into a more or less well developed foot callus. This character is variously strongly expressed in the different species of the three genera involved.

Glossopappus

169 Pappus a large, scarious, adaxial, flabelliform auricle, as long as the corolla or longer.

Coleostephus

There is no autapomorphy for this genus.

Plagius

1 reversed. See clade Le9.
35 Capitula discoid.
41 reversed. See clade Le11.
63. LEPIDOPHORUM Necker ex Cass. in Dict. Sc. Nat. 26: 36 (1823). Type species: L. repandum (L.) DC.

An annual or biennial herb. Leaves alternate, oblong to obovate-spathulate, serrate. Capitula solitary, pedunculate, radiate. Involucral bracts wide, many-veined. Receptacle paleate; paleae scarious with a conspicuous resin canal. Ray florets neuter or female, sterile; limb yellow. Disc corolla 5-lobed. Ray cypselas (sterile) flat, with 2 lateral and 1 adaxial resin canal; pappus of c. 4 free or basally connate
scales. Disc cypselas 5 -angled with 5 thin ribs covered with myxogenic cells; pappus absent.

Distribution. SW Europe in Spain and Portugal. - Monotypic.
Lepidophorum, formerly a member of Anthemis because of its paleate receptacle, is difficult to place. Several authors have suggested a relationship to Leucanthemum mainly because of the habitual (foliage) similarities, though Lepidophorum does not have the specialized fruits of the Leucanthemum group of genera.

Harling (1960) investigated the embryology of many Anthemis species, including A. repanda (=Lepidophorum repandum). Lepidophorum has the common (Polygonum) type of monosporic embryo sacs, while Anthemis proper has tetrasporic embryo sacs. Harling also described the cypselas of Lepidophorum in detail and discussed the relationships of the genus. He concluded that Lepidophorum should be recognized as a separate genus, not related to Anthemis but possibly distantly so to Coleostephus, i. e. the Leucanthemum group of genera. Lepidophorum is here provisionally placed as a basal member of subtribe Leucantheminae, where the Leucanthemum group is a subclade (Fig. 10, Le8).

64. NIPPONANTHEMUM Kitam. in Acta phytotax.

 geobot. Kyoto 29: 169 (1978). Type species: N. nipponicum (Franchet ex Maxim.) Kitam.A shrub. Leaves alternate, obovate, apically serrate leaves rather densely set at the ends of the branches. Capitula rather large, solitary, pedunculate, radiate. Involucral bracts wide, many-veined. Receptacle convex, epaleate. Ray florets female, fertile; limb white, many-veined. Disc corolla 5-lobed. Cypselas oblong, 8-10-ribbed, rather thin-walled, without myxogenic cells. Pappus a corona of small scales.

Distribution. Japan. - Monotypic.
The monotypic Nipponanthemum is based on a handsome species formerly known as Chrysanthemum nipponicum Franchet ex Maxim. The position of Nipponanthemum is very unclear. It is provisionally placed as an aberrant member of subtribe Leucantheminae. It may on the other hand be more closely related to the relatively plesiomorphic members of Artemisiinae, i. e. Dendranthema or certain species in that genus. When he described the genus Kitamura considered it related to Argyranthemum but we find no support for his conclusion.

65. LEUCANTHEMELLA Tzvelev in Komarov, Fl. URSS 26: 137 (1961). Type species: L. serotina (L.) Tzvelev.

Perennial herbs. Leaves alternate, entire or serrate. Capitula solitary or laxly corymbose, pedunculate, radiate. Receptacle convex, epaleate. Ray florets female, sterile; limb white or reddish, many-veined. Disc corolla 5-lobed, with a distinct enervate limb with sessile glands. Cypselas distinctly 7-12ribbed, without myxogenic cells, with an apical rim but pappus absent.

Distribution. E. Europe (L. serotina) and Far East, China in Manchuria, Korea and Japan (L. linearis). - 2 spp.

This genus is difficult to place (see Dienst, 1983). Tzvelev
also noted its isolated position. In habit it is similar to other members of subtribe Leucantheminae, where it is provisionally placed. It may also be related to Dendranthema or some species of that genus. Leucanthemella has distinctly manyribbed, non-myxogenic fruits. This may be related to habitat; the two species grow in marshy places.
L. linearis (Matsum.) Tzvelev
L. serotina (L.) Tzvelev
66. NIVELLEA Wilcox, Bremer \& Humphries, gen. nov. Type species: N. nivellei (Braun-Blanquet \& Maire) Wilcox, Bremer \& Humphries.

Herba annua. Folia lobata sublacerata. Capitula solitaria pedunculata radiata. Receptaculum epaleaceum. Flosculi radiati limbo albo. Flosculi disci tubo basaliter incrassato. Cypselae oblongae, 5-8-costata, sine canalibus secretoriis, sine cellulis mucilaginis. Pappus nullus.

An annual herb. Leaves lobed and rather lacerate. Capitula solitary, pedunculate, radiate. Receptacle flat to convex, epaleate. Ray florets female, fertile; limb white. Disc corolla 5-lobed; tube basally swollen in fruit. Cypselas oblong, 5-8-ribbed, without resin canals and myxogenic cells. Pappus absent.

Distribution. N. Africa in Morocco. - Monotypic.
The position of Nivellea is difficult to assess. It is superficially similar to some members of the Leucanthemum group, e. g. Leucoglossum, but does not have the specialized cypselas of that group. It is here provisionally placed as a basal member of subtribe Leucantheminae.
N. nivellei (Braun-Blanquet \& Maire) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum nivellei Braun-Blanquet \& Maire in Bull. Soc. Hist. nat. Afr. N. 13: 187 (1922).
67. PHALACROCARPUM (DC.) Willk. in Bot. Ztg 22: 252 (1864). Type species: P. oppositifolium (Brot.) Willk.

Creeping, suffruticose perennials. Leaves opposite, sheathing, serrate to pinnatifid. Capitula solitary, pedunculate, radiate. Involucral bracts with dark brown margins. Receptacle convex, epaleate. Ray florets female, fertile; limb white or purplish. Central disc florets male (style-branches fused) or neuter. Disc corolla 5-lobed. Cypselas 7-9-ribbed; testa epidermis thick-walled and dark reddish, of elongate-sinuate cells. Pappus absent.

Distribution. SW Europe in Spain and Portugal. - 2 spp.
Phalacrocarpum with opposite leaves is in habit and leaf shape similar to other members of Leucantheminae. The subtribal position of this genus must nevertheless be considered provisional.

P. hoffmannseggii (Samp.) Lainz

P. oppositifolium (Brot.) Willk. (P. anomalum Cout.)
68. LEUCANTHEMOPSIS (Giroux) Heyw. in An.

Inst. bot. A. J. Cavanilles 32: 181 (1975). Type species: L. alpina (L.) Heyw.
Creeping or caespitose suffruticose perennials. Leaves alternate, serrate to pinnatifid, generally pectinate and spathulate in outline. Capitula solitary, rather long-pedunculate, radiate. Involucral bracts sometimes with dark brown margins. Receptacle convex, epaleate. Ray florets female, fertile; limb white to pinkish or yellow. Disc corolla 5-lobed; tube basally somewhat swollen in fruit. Cypselas 3-10-ribbed, with myxogenic cells especially on the ribs, often with large 2-celled glands. Pappus a scarious flimsy corona. Flavonol 5-glycosides present.

Distribution. S. Europe mainly in Spain but extending to SW Russia (L. alpina), one species in N. Africa in Morocco (L. longipectinata). -9 spp.

Leucanthemopsis was originally a subsection of Tanacetum (sect. Pyrethrum), Tanacetum then taken in a very wide sense. Heywood $(1954,1976)$ noted its intermediate position between Tanacetum and Leucanthemum. Obviously, the Leucanthemopsis species could not be accommodated in any of these two large genera, and the subsection was elevated to the rank of genus. New taxa have recently been described by Marchi (1980).

In floral morphology and foliage Leucanthemopsis agrees with Hymenostemma, a possible sister group. Species of Leucanthemopsis are creeping or caespitose suffruticose perennials, whereas Hymenostemma is an annual herb. It seems to be the only reliable difference. On the other hand Hymenostemma groups with the specialized Prolongoa, both being annuals. The three genera clearly form a monophyletic group, but their interrelationships are uncertain. It is also possible that Leucanthemopsis is paraphyletic with Hymenostemma and Prolongoa excluded. The matter requires further study.
L. alpina (L.) Heyw.
L. flaveola (Hoffsgg \& Link) Heyw.
L. longipectinata (Font Quer) Heyw.
L. minima (Villars) Marchi
L. pallida (Miller) Heyw.
L. pectinata (L.) Lopéz González \& Jarvis (L. radicans (Cav.) Heyw.)
L. pulverulenta (Lagasca) Heyw.
L. tatrae (Vierh.) Holub
L. tomentosa (Lois.) Marchi
69. HYMENOSTEMMA (Kunze) Willk. in Bot. Ztg 22: 253 (1864). Type species: H. pseudanthemis (Kunze) Willk. - Prolongoa sect. Hymenostemma Kunze, pro parte.
An annual herb. Leaves alternate, pinnatifid-pectinate, spathulate in outline. Capitula solitary, rather longpedunculate, radiate. Receptacle convex to conical, epaleate. Ray florets female, sterile; limb white. Disc corolla 5-lobed; tube basally swollen in fruit. Cypselas 5-6-ribbed, with myxogenic cells along the ribs. Pappus a scarious, flimsy corona.
Distribution. SW Europe in Spain and N. Africa in Morocco. - Monotypic.

Hymenostemma is very similar in habit to Prolongoa, though
the latter is distinguished by a number of floral autapomorphies. Hymenostemma differs from Leucanthemopsis by its annual habit, a feature shared by Prolongoa. The sister group relationships of these three genera are somewhat uncertain and it is even possible that Hymenostemma and Prolongoa, together or separately, have their sister groups within Leucanthemopsis.
70. PROLONGOA Boiss., Voyage bot. Espagne 2: 320 (1840). Type species: P. hispanica Lopéz González \& Jarvis.

An annual herb. Leaves alternate, pinnatifid-pectinate, generally spathulate in outline. Capitula solitary, rather longpedunculate, radiate. Receptacle convex, epaleate. Ray florets neuter; limb yellow; pappus a large flimsy corona. Disc corolla 5-lobed. Style-branches long-penicillate. Cypselas with 1 adaxial and 2 lateral rather thick ribs and 2 abaxial ribs, with myxogenic cells along the ribs; cypsela wall with rod-shaped crystals in small packets; pappus absent.

Distribution. SW Europe in Spain. - Monotypic.
Prolongoa has been proposed and now accepted for conservation (Bremer et al., 1987). The species has been known erroneously as Prolongoa pectinata, a name that cannot be used since the basionym is a species of Leucanthemopsis. Prolongoa is related to Hymenostemma and Leucanthemopsis. The matter is further discussed under these genera. Prolongoa has a number of autapomorphies, e. g. a reduced disc floret pappus and more strongly developed cypsela ribs.

71. LEUCANTHEMUM Miller, Gard. Dict. abr. 4th ed. (1754). Type species: L. vulgare Lam.

Perennial herbs with red-tipped roots. Leaves alternate, entire, serrate, or pinnatifid. Capitula solitary or laxly corymbose, pedunculate, radiate or discoid. Receptacle convex or sometimes conical, epaleate. Ray florets female, fertile; limb white, pink, or rarely yellow. Disc corolla 5-lobed; tube basally swollen and spongy in fruit, especially abaxially. Cypselas c. 10 -ribbed with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs, with myxogenic cells along the ribs. Pappus a corona or an adaxial auricle, sometimes absent. Flavonol 5-glycosides present.

Distribution. Throughout Europe but mainly C. and S. parts, one species (L. discoideum) also in N. Africa in Morocco, Algeria, and Tunisia, some species (e.g. L. vulgare) widespread as weeds. - 33 spp.
With the removal of L. paludosum (=Leucoglossum paludosum) and L. arundanum (=Rhodanthemum arundanum) as well as the North African Leucanthemum species to Leucoglossum and Rhodanthemum, Leucanthemum becomes morphologically homogeneous and defined by its anthocyanin red root tips. The latter are present in all herbaceous perennials (Favarger, 1966) which now constitute the genus Leucanthemum s. s. The genus is a polyploid complex (Villard, 1970).
L. adustum (Koch) Gremli
L. aligulatum Vogt
L. atratum (Jacq.) DC.
L. burnatii Briq. \& Cav.
L. catalaunicum Vogt
L. chloroticum A. Kerner \& Murb.
L. corsicum (Less.) DC.
L. crassifolium (Lange) Willk. in Willk. \& Lange
L. cuneifolium Le Grand ex Coste
L. delarbrei Timb.-Lagr.
L. discoideum (All.) Coste (L. fontanesii Boiss. \& Reuter, Chrysanthemum fontanesii (Boiss. \& Reuter) Quezel \& Santa)
L. favargeri Vogt
L. gaudinii Dalla Torre
L. gracilicaule (Duf.) Alavi \& Heyw.
L. graminifolium (L.) Lam.
L. heterophyllum (Willd.) DC.
L. ircutianum DC.
L. laciniatum Huter, Porta \& Rigo
L. lacustre (Brot.) Samp.
L. leucolepis (Briq. \& Cav.) Horvatić
L. maestracense Vogt \& Hellwig
L. maximum (Ram.) DC.
L. meridionale Le Grand
L. merinoi Vogt \& Castroviejo
L. monspeliense (L.) Coste
L. montserratianum Vogt
L. pallens (Gay in Perreymond) DC.
L. praecox (Horvatić) Horvatić
L. pluriflorum Paul.
L. subglaucum De Laramb.
L. sylvaticum (Brot.) Nyman
L. vulgare Lam.
L. waldensteinii (Schultz-Bip.) Pouzar

72. RHODANTHEMUM Wilcox, Bremer \&

 Humphries, comb. et stat. nov. Type species: R. arundanum (Giroux) Wilcox, Bremer \& Humphries (Leucanthemum sect. Rhodanthemum Vogt, Leucanthemum subg. Chrysanthemopsis Maire, nom. nud.).Plantae perennes stolonibus saepe tegetes formantes. Folia alterna aggregata rosulata trifida vel ternato-pinnata ut videtur longi-petiolata. Capitula solitaria longepedunculata radiata. Bracteae involucri margine atro-fuscae. Receptaculum convexum epaleaceum. Flosculi radii feminei, vel fertiles vel steriles, limbo albido vel roseo vel rubro vel cremeoaurantici multi-venoso. Flosculi disci corolla quinquiloba, lutea vel rubra tubo basi inflato et spongioso in fructus maturitate. Cypselae 5-12-costae valleculis lacunis et canaliculis secretoriis cum filis vascularibus et cellulis myxogenis intercostalibus instructis; costae protusae angustae et aliquantum aliformes. Pappus e corona scariosa vel auricula adaxiali basi coroniformi sistens.

Stoloniferous and often mat-forming perennials. Leaves alternate, closely set, becoming rosulate, trifid or ternatepinnatifid and seemingly long-petiolate. Capitula solitary, with long peduncles, radiate. Involucral bracts with dark brown margins. Receptacle convex, epaleate. Ray florets female, fertile or sterile; limb white, pink, reddish, or creamy orange, many-veined. Disc corolla 5-lobed, yellow or red; tube basally swollen and spongy at maturity of the fruit. Cypselas 5-12-ribbed with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs, and with myxogenic cells along the ribs; ribs protruding,
narrow and somewhat wing-shaped. Pappus with a scarious corona or an adaxial basally coroniform auricle.

Distribution. N. Africa in Morocco and Algeria, one species (R. arundanum) also in SW Europe in Spain. - 12 spp .

Rhodanthemum (see Vogt, 1991) is a well characterized group of North African, Atlas montane perennials which form mats at relatively high altitudes ($700-1200 \mathrm{~m}$). They were formerly classified in Leucanthemum or Chrysanthemum but are distinguished by a number of synapomorphies.
R. arundanum (Boiss.) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Pyrethrum arundanum Boiss., Voy. bot. Espagne 2: 317 (1840) (Leucanthemum arundanum (Boiss.) Cuatrec., Leucanthemum mairei Humbert).
R. atlanticum (Ball) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum atlanticum Ball in J. Bot., Lond. 11: 366 (1873) (Leucanthemum atlanticum (Ball) Maire).
R. briquetii (Maire) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Leucanthemum briquetii Maire in Bull. Soc. Hist. nat. Afr. N. 15: 88 (1924).
R. catananche (Ball) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum catananche Ball in J. Bot. Lond. 11: 366 (1873) (Leucanthemum catananche (Ball) Maire).
R. depressum (Ball) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum gayanum var. depressum Ball in J. Linn. Soc. 16: 509 (1878) (Leucanthemum depressum (Ball) Maire).
R. gayanum (Cosson \& Durieu) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Pyrethrum gayanum Cosson \& Durieu in Bull. Soc. bot. Fr. 4: 15 (1857) (Chrysanthemum gayanum Ball, Leucanthemum gayanum (Cosson \& Durieu) Maire).
R. hosmariense (Ball) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum maresii var. hosmariense Ball in J. Bot. Lond. 11: 366 (1873) (Leucanthemum hosmariense (Ball) Font Quer).
R. maresii (Cosson) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Pyrethrum maresii Cosson in Bull. Soc. bot. Fr. 4: 16 (1857) (Leucanthemum maresii (Cosson) Maire).
R. maroccanum (Battand.) Wilcox, Bremer \& Humphries, comb. nov. Basionym: (Chrysanthemum maroccanum Battand. in Bull. Soc. Hist. nat. Afr. N. 12: 189 (1921) (Leucanthemum maroccanum (Battand.) Maire).
R. mesatlanticum (Emb. \& Maire) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Leucanthemum mesatlanticum Emb. \& Maire, Pl. Maroc Nov. (Arch. Sci. Maroc.) Fasc. II: 5 (1929).
R. pseudo-catananche (Maire) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Leucanthemum pseudocatananche Maire in Mém. Soc. Sci. nat. Phys. Maroc 15:37 (1926).
R. redieri (Maire) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Leucanthemum redieri Maire in Mém. Soc. Sci. nat. Phys. Maroc 15:38 (1926).

73. LEUCOGLOSSUM Wilcox, Bremer \&

Humphries, gen. nov. Type species: L. paludosum
(Poiret) Wilcox, Bremer \& Humphries - Prolongoa sect. Hymenostemma Kunze pro parte.

Herbae annuae. Folia dentata-serrata vel pinnatifida. Capitula solitaria radiata. Receptaculum epaleaceum. Flosculi radiati limbo albo vel flavido, basaliter luteo; pappus coroniformis scariosus vel adaxialiter auriculiformis. Flosculi disci corolla parum zygomorpha tubo incrassato; pappus plerumque nullus. Cypselae ellipsoideae parvae 7-10costatae, inter costas lacunis vallecularibus canalibus secretoriis et fasciculis vascularibus, in costis cellulis mucilaginis instructae.

Annual herbs. Leaves alternate, dentate-serrate to pinnatifid. Capitula solitary, pedunculate, radiate. Receptacle convex or conical, epaleate. Ray florets female, fertile; limb white or pale yellow with a yellowish base; pappus a scarious corona or an adaxial auricle. Disc corolla 5-lobed, slightly zygomorphic; tube basally swollen in fruit. Cypselas ellipsoid, comparatively small, c. 1 mm long, $7-10$-ribbed with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs, with myxogenic cells along the ribs; generally the pappus is absent.
Distribution. SW Europe (L. paludosum) in Spain and N. Africa (all species) in Morocco, Algeria, Tunisia, and Libya. -3 spp .

The type species of this new genus has been recognized as anomalous within Leucanthemum e. g. in Flora europaea (Tutin et al., 1976). It differs by its annual habit, the small cypselas and the pappus, present in ray florets but absent in disc florets. Together with two North African species it is more closely related to Chlamydophora, another annual with small cypselas.

Leucoglossum paludosum is often cultivated as an ornamental.
L. decipiens (Pomel) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Leucanthemum decipiens Pomel, Nouv. mat. fl. atl.: 59 (1860).
L. paludosum (Poiret) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum paludosum Poiret, Voy. Barbarie 2: 241 (1789). (Leucanthemum paludosum (Poiret) Bonnet \& Barratte, Leucanthemum setabense DC., Hymenostemma paludosum (Poiret) Pomel).
L. reboudianum (Pomel) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Leucanthemum reboudianum Pomel, Nouv. mat. fl. atl.: 291 (1860).
74. CHLAMYDOPHORA Ehrenb. ex Less., Syn. gen. Compos.: 265 (1832). Type species: C. tridentata (Del.) Ehrenb. ex Less.
An annual herb. Leaves alternate or basally opposite, entire or tridentate, somewhat fleshy. Capitula solitary, pedunculate, discoid. Receptacle convex, epaleate. Corolla 4- or 5 -lobed, yellow or sometimes reddish; tube basally swollen and spongy in fruit. Cypselas ellipsoid, comparatively small, c. 1 mm long, $6-10$-ribbed with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs, with myxogenic cells on the ribs. Pappus a large, scarious, adaxial but basally coroniform auricle, as long as the corolla or longer.

Distribution. N. Africa in Tunisia, Libya, and Egypt, SE Europe in Greece and in Cyprus. - Monotypic.
Chlamydophora is the monotypic and discoid sister group of Leucoglossum. The former C. pubescens is transferred to Aaronsohnia. C. tridentata is known also as Tripleurospermum tridentatum Hoffm.

75. CHRYSANTHOGLOSSUM Wilcox, Bremer \&

 Humphries, gen. nov. Type species: C. trifurcatum (Desf.) Wilcox, Bremer \& Humphries.Herbae annuae vel raro biennes. Folia pinnatisecta vel saepe trifurcata. Capitula solitaria, pedunculata, radiata. Bracteae involucri latae, plurinerves, flabelliformes. Receptaculum epaleaceum. Flosculi radiati limbo aureo; pappus adaxialiter auriculiformis scariosus vel nullus. Flosculi disci tubo incrassato spongioso in fructu; pappus coroniformis rigidus extus cellulis mucilaginis instructus. Cypselae c. 10-costata, inter costis lacunis vallecularibus canalibus secretoriis et fasciculis vascularibus, in costis et corona cellulis mucilaginis instructae.
Annual or rarely biennial herbs. Leaves alternate, pinnatisect, often trifurcate. Capitula solitary, pedunculate, radiate. Involucral bracts wide, many-veined, flabelliform. Receptacle convex, epaleate. Ray florets female, sterile or sometimes fertile; limb golden yellow, many-veined; pappus a scarious adaxial auricle or absent. Disc corolla 5 -lobed; tube basally swollen and spongy in fruit; lobes with appendages; pappus a rather stiff corona with myxogenic cells on the outside. Cypselas dorsiventrally somewhat compressed, c. 10 -ribbed with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs, with myxogenic cells along the ribs and also on the pappus.
Distribution. N. Africa in Morocco, Algeria, Tunisia and Libya. - 2 spp.
Both species are readily recognizable as sister species by the distinctive leaves and cypselas. Chrysanthoglossum is the sister group of the three genera Glossopappus, Coleostephus, and Plagius.
C. deserticola (Murb.) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Pyrethrum deserticola Murb., in Acta Univ. lund. 33(12): 98 (1897) (Chrysanthemum deserticola (Murb.) F. Buxbaum).
C. trifurcatum (Desf.) Wilcox, Bremer \& Humphries, comb. nov. Basionym: Chrysanthemum trifurcatum Desf., Fl. atlant. 2: 281 (1799) (Leucanthemopsis trifurcata (Desf.) Alavi).

76. GLOSSOPAPPUS Kunze in Flora, Jena 29: 748

 (1846). Type species: G. chrysanthemoides Kunze (G. macrotus (Durieu) Briq. in Burnat).An annual herb. Leaves alternate, serrate-dentate, obovatespathulate. Capitula solitary, pedunculate, radiate. Involucral bracts wide, flabelliform. Receptacle conical, epaleate. Ray florets female, fertile; limb golden yellow, many-veined. Disc corolla 5 -lobed; tube basally much swollen and spongy in fruit, especially abaxially; lobes with appendages. Cypselas somewhat arcuate, 8 -10-ribbed with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs, with myxogenic cells along the ribs; basally with a
bulbous callus; pappus a large, scarious, adaxial, flabelliform auricle, as long as the corolla or longer.
Distribution. SW Europe in Spain and Portugal, N. Africa in Morocco, Algeria and Tunisia. - Monotypic.

Glossopappus macrotus is related to Coleostephus and Plagius. Possibly Glossopappus has its sister group within a paraphyletic Coleostephus. The three genera form a monophyletic group. They are further discussed under Coleostephus.

77. COLEOSTEPHUS Cass. in Dict. Sci. Nat. 41: 43
 (1826). Type species: C. myconis (L.) Reichenb. f.

Annual herbs. Leaves alternate, serrate-dentate, spathulate. Capitula solitary or laxly corymbose, pedunculate, radiate. Involucral bracts wide, more or less flabelliform. Receptacle convex to conical, epaleate. Ray florets female, fertile; limb golden yellow, many-veined. Disc corolla 5-lobed; tube basally much swollen and spongy in fruit, especially abaxially; lobes with more or less developed appendages. Cypselas arcuate, $8-10$-ribbed with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs, with myxogenic cells on the ribs; ribs basally and adaxially fused into a bulbous callus; pappus an oblique, adaxially more or less strongly developed scarious corona. Flavonol 5-glycosides present.
Distribution. S. Europe and N. Africa from Morocco to Libya. - 3 spp.
Coleostephus is related to Plagius and Glossopappus (Alavi, 1968, 1988; Alavi \& Heywood, 1976). The six species of these three genera form a monophyletic group but their interrelationships are unclear. Plagius with two species is diagnosed by being discoid and perennial (probably secondarily) but these characters are homoplasious and not supported by stronger synapomorphies. The monotypic Glossopappus has a specialized large pappus auricle. There is no synapomorphy to diagnose Coleostephus from the other two genera and it is possibly paraphyletic. Coleostephus and Plagius appear to be related by their more arcuate cypselas but the character is variable within Coleostephus.

C. multicaulis (Desf.) Durieu (Chrysanthemum multicaule Desf.)
 C. myconis (L.) Reichenb. f. (Chrysanthemum myconis L.,

 Kremeria myconis (L.) Maire)C. paludosus (Durieu) Alavi (C. clausonis Pomel, Chrysanthemum clausonis (Pomel) Battand., Kremeria paludosa Durieu)

78. PLAGIUS L'Hérit. ex DC., Prodr. 6: 135 (1838). Type species: P. ageratifolius (Desf.) L'Hérit. ex DC. (P. flosculosus (L.) Alavi \& Heyw.).

Herbaceous or suffruticose perennials. Leaves alternate, serrate-dentate, spathulate. Capitula solitary or laxly corymbose, pedunculate, discoid. Receptacle flat or convex, epaleate. Disc corolla 5 -lobed; tube basally swollen and spongy in fruit; lobes with appendages. Cypselas arcuate, c. 10-ribbed, with vallecular lacunae and vallecular secretory canals as well as vascular strands between the ribs; basally with a bulbous callus, with myxogenic cells on the ribs. Pappus an adaxial auricle. Flavonol 5-glycosides present.

Distribution. S. Europe in Corsica and Sardinia (P. flosculosus) and N . Africa in Algeria and Tunisia (P. grandis). - 2 spp.
The two species are very different from each other. Alavi \& Heywood (1976) united them into one genus because both are discoid. P. grandis is instantly recognizable by the larger solitary capitula on unbranched, basally hairy stems. P. flosculosus, by contrast, has smaller capitula on branched stems and it is similar to species of the related genera Coleostephus and Glossopappus, except for the discoid capitula. Plagius, Coleostephus, and Glossopappus form a monophyletic group but their interrelationships deserve further study (see under Coleostephus). The species known as P. virgatus (Desf.) DC. is synonymous with Leucanthemum discoideum, following Alavi \& Heywood (1976).
P. flosculosus (L.) Alavi \& Heyw.
P. grandis (L.) Alavi \& Heyw. (Chrysanthemum grandiflorum (Desf.) Battand.)

11. THAMINOPHYLLINAE Bremer \& Humphries, subtrib. nov.

Type species: Thaminophyllum multiflorum Harvey

Herbae perennes vel suffrutices vel frutices. Folia serrata vel dentata vel integra vel solum pauciloba. Capitula solitaria, radiata. Cypselae oblongae vel ellipsoideae. Pappus coroniformis vel nullus.

Perennial herbs, half-shrubs or shrubs. Leaves serrate, dentate, entire, or few-lobed only. Capitula solitary, radiate. Receptacle flat to conical, paleate or epaleate, sometimes pilose. Ray floret limb white or yellow. Disc corolla 4- or 5-lobed. Cypselas oblong to ellipsoid, 3-8-ribbed (or angled) or rarely 10 -ribbed with costal veins and resin canals (Adenanthellum), without or rarely with large myxogenic cells in scattered groups (Thaminophyllum). Pappus a corona or absent.

Distribution (Table 22). S. Africa. - 5 genera, 17 spp.
Table 22 General distribution of Thaminophyllinae and genera. $\mathrm{x}=$ indigenous, $\mathrm{o}=$ introduced.

	S. Afr.
Thaminophyllinae	x
Osmitopsis	x
Adenanthellum	x
Inezia	x
Lidbeckia	x
Thaminophyllum	x

This subtribe comprises some small South African genera, which have received little attention in general treatments of the Anthemideae. Thaminophyllum, Lidbeckia, Inezia, and Adenanthellum are related as noted by earlier authors. Bond (1980) and Goldblatt (1980) stated that Thaminophyllum is related to Lidbeckia and Inezia. The unusual chromosome number $\mathrm{x}=10$, known in Thaminophyllum and Inezia, is a feature mentioned by Bond and Goldblatt. Inezia was originally described as a Lidbeckia. Adenanthellum was assumed to be most closely related to Inezia by Nordenstam (1976) when he originally described the genus.

Osmitopsis was earlier classified in Inuleae because of the tailed anthers and its proper relationship within Anthemideae has hitherto not been considered. A preliminary chromosome count of $2 \mathrm{n}=10$ as well as remarkable similarities between some species of Osmitopsis and the other genera indicate that these genera are related, and it is probable that together they form a monophyletic group. The cladogram is the single most parsimonious one derivable from the data matrix.

Clades and characters - Fig. 11, Tables 2, 23.

Fig. 11 Cladogram of the Thaminophyllinae produced by the ie option in Hennig86. Cladogram length $=25$, consistency index $=$ 92 , retention index $=80$.

Table 23 Data matrix for the Thaminophyllinae. $1=$ presence, $0=$ absence, ? = missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $a=$ polymorphic but scored as the apomorphic condition.

1111	1	1111	11	1
11111				
145057652	745966	5892337574081	24	177675
532718111	75620157784132928538262	365600		
a1111?10a	$1111000000000 \mathrm{p} 000 \mathrm{p} ? 0 \mathrm{p} 00$	$? ? ? 00 \mathrm{p}$		
a1111?111	$? 0001111111110000 ? 0000$	$? ? ? ? ? ?$		
a1011?101	$10001110000001100 ? 0000$	$? ? ? 00 ?$		
$11111 ? 100$	$? 0001100000001011111000$	$? ? ? ? ?$		
$m 01111 ? 100$	10001100000001011110111	$? ? ? ? ? ?$		

Clade Th1 - subtribe Thaminophyllinae
51 reversed. Floral parts without resin canals. Floral resin canals are present in a number of subtribes and also in Thaminophyllinae, although only in Adenanthellum. This is most parsimoniously explained as a reversal for the subtribe with a reappearance in Adenanthellum. Clearly, the character is difficult to interpret.
177 Chromosome number $x=10$. The chromosome number is unknown in Adenanthellum and Lidbeckia, but is nevertheless best interpreted as a synapomorphy for the whole subtribe.

Osmitopsis

45 Receptacle paleate.

56 Ray floret limb epidermis cells tabular (senecioid or mutisioid type). This ligule epidermis type is uncommon in Anthemideae and reported for example in Osmitopsis (Baagøe, 1977).

92 Anthers caudate.

Clade Th2

60 Ray floret tube confluent with the cypsela.
61 Ray floret tube persistent on the cypsela. In Adenanthellum and Inezia the tube sinus extends to the base and the tube is then virtually absent. Nevertheless the ray corolla, in these cases the limb, is both confluent with and persistent on the cypsela.
Clade Th3

5 Plants with one or few sparsely branched stems arising from a woody villous caudex. Some species of Osmitopsis are similar to Adenanthellum and Inezia in this aspect, as mentioned by Nordenstam (1976) when grouping the latter two genera together.

57 Ray floret tube sinus extending to the base.

Adenanthellum

51 Floral parts with resin canals. See note under clade Th1.
87 Disc corolla tube confluent with the cypsela.
98 Pollen grains hexa-panto-colporate.
124 Cypselas with 10 (8-12) multicellular epicarpic ribs.
131 Cypselas 10 -ribbed with costal veins and resin canals.
133 Cypselas with costal resin canals or sacs. This is characteristic, for example, of Lepidophorum in Leucantheminae and large part of Matricariinae but in Adenanthellum the cypselas are also 10 -ribbed. Whether the resin canals are homologous in the two groups or not is difficult to assess. It is interpreted here as a parallelism.

172 Pappus absent in ray and disc cypselas.
Inezia
52 reversed. Ray floret limb yellow not white.
59 Ray floret tube and cypsela pilose laterally; ray floret limb pilose abaxially. This character also occurs in one of the two Lidbeckia species (L. pectinata).

72 Disc corolla 4-lobed.

Clade Th4

21 reversed. Leaves not serrate-dentate.
48 Receptacle pilose.
72 Disc corolla 4-lobed.
105 Stylopodium large and persistent in fruit. This character occurs also in some species of Osmitopsis.

172 Pappus absent in ray and disc cypselas.
183 Dehydrofalcarinone and dehydrofalcarinol present. The other genera of this subtribe are unknown chemically.

Lidbeckia

18 Leaves with few, oblong to rounded, apically mucronate lobes.

Thaminophyllum

2 Plants shrubby.

15 reversed. Leaves entire, not variously deeply lobed or divided.
26 Leaves closely set, lanceolate to linear.
142 Cypselas with large myxogenic cells in rounded, scattered groups.
79. OSMITOPSIS Cass. in Bull. Sci. Soc. philom.

Paris 1817: 154 (1817). Type species: O. asteriscoides (P. Bergius) Less.
Shrubs or half-shrubs. Leaves alternate, lobed, dentate, serrate, or entire, often glandular-punctate. Capitula solitary or laxly corymbose, radiate. Receptacle flat or convex to conical, paleate. Ray florets female, fertile or sterile, or neuter; tube occasionally pilose; limb white, many-veined, occasionally abaxially pilose; epidermis cells tabular. Disc corolla 5 -lobed, glandular. Anthers caudate. Stylopodium sometimes large and persistent in fruit. Cypselas somewhat $3-4$-angled or -ribbed. Pappus a corona of subulate to triangular scales, or absent.
Distribution. S. Africa in the Cape. -9 spp.
Until recently Osmitopsis has been placed in the Inuleae because of its tailed anthers. The traditional concept of the Anthemideae comprised genera without anther tails, a condition which must be interpreted as a symplesiomorphy, however. Tailed anthers have evolved independently within Anthemideae in the relatively unrelated genera Osmitopsis, Inulanthera (Gonosperminae), and Hippolytia (Tanacetiinae). Stix (1960) showed that Osmitopsis has anthemoid pollen and the tribal position in the Anthemideae was confirmed by Bremer (1972) and Reitbrecht (1974).

The position of Osmitopsis within Anthemideae has hitherto remained unclear (Heywood \& Humphries, 1977). It is placed here in Thaminophyllinae with other small South African genera with similar habit, foliage, many-veined rays, and the less usual chromosome number of $x=10$. A preliminary count of $2 \mathrm{n}=20$ was made by Bremer (unpubl., on O. pinnatifida) but it needs confirmation. Various but not all species of Osmitopsis are similar to other genera of subtribe Thaminophyllinae in a number of characters, particularly in habit, pilose and sterile rays, the loss of pappus and a large stylopodium. The genus was revised by Bremer $(1972,1976)$.
O. afra (L.) Bremer
O. asteriscoides (P. Bergius) Less.
O. dentata (Thunb.) Bremer
O. glabra Bremer
O. nana Schltr
O. osmitoides (Less.) Bremer
O. parvifolia (DC.) Hofmeyr
O. pinnatifida (DC.) Bremer
O. tenuis Bremer
80. ADENANTHELLUM B. Nord. in Bot. Notiser

132: 160 (1979). Type species: A. osmitoides
(Harvey) B. Nord. - Adenanthemum B. Nord.
A perennial herb with erect stems from a subterranean caudex. Leaves alternate, serrate, glandular-punctate. Capitula solitary, radiate. Receptacle convex, epaleate. Ray florets female, fertile; limb white, many-veined, confluent with the cypsela; tube absent (sinus extended to the base). Disc corolla 5 -lobed, confluent with the cypsela. Pollen hexa-panto-colporate. Cypselas oblong, 10 -ribbed, with 10 veins and 10 resin canals. Pappus absent.
Distribution. S. Africa in Natal and Transvaal and in Swaziland. - Monotypic.

This recently described monotypic genus has a number of
autapomorphies, notably the unique pollen and the 10 -ribbed cypselas with 10 resin canals. In habit and life-form, with a subterranean caudex generating herbaceous flowering stems, it is similar to Inezia, as indicated also by Nordenstam (1976) in his original description.

A chromosome number of $2 \mathrm{n}=30$ was reported by Goldblatt (1980) who cited a preliminary, unpublished count by Nordenstam. From that one count (Nordenstam, pers. comm.) it is impossible to tell whether it represents an occasional triploid cell or a triploid specimen or taxon.

The name Adenanthellum (Nordenstam, 1979) replaces Adenanthemum (Nordenstam, 1976), which turned out to be illegitimate.
81. INEZIA E. Phillips in Bull. misc. Inf. R. bot. Gdns, Kew: 297 (1932). Type species: I. integrifolia (Klatt) E. Phillips.

Perennial herbs with erect stems from a subterranean caudex. Leaves alternate, entire, glandular-punctate. Capitula solitary, radiate. Receptacle convex, epaleate. Ray florets female, fertile; limb yellow, many-veined, abaxially and basally laterally pilose, confluent with the laterally pilose cypsela; tube absent. Disc corolla 4-lobed, glandular. Cypselas oblong, 4 -angled. Pappus of minute scales.

Distribution. S. Africa in Transvaal and in Swaziland. - 2 spp.
Inezia is based on the transfer of 1 . integrifolia from the related genus Lidbeckia. Brusse (1989a) has shown that the two genera differ by several floral characters. Inezia has a stylopodium of thick-walled cells as compared with thinwalled cells in Lidbeckia and the nectaries are conspicuously larger in Lidbeckia. Also, there are 9-10 rows of cells in the filament collars of Lidbeckia as compared with 5-8 rows of cells in Inezia. Both genera have a 4 -lobed corolla but nevertheless the sister group of Inezia is taken here to be Adenanthellum (with a 5-lobed corolla). These two genera have subterranean caudices from which herbaceous stems emerge (Nordenstam, 1976). They also have rays without a tube. It is more parsimonious to place Adenanthellum rather than Lidbeckia (as well as Thaminophyllum) as the sister group of this genus.
I. integrifolia (Klatt) E. Phillips
I. speciosa Brusse

82. LIDBECKIA P. Bergius, Descr. pl. Cap.: 307
 (1767). Type species: L. pectinata P. Bergius

Half-shrubs. Leaves alternate, glandular-punctate with few, oblong to rounded, apically mucronate lobes. Capitula solitary, rather long-pedunculate, radiate. Receptacle convex, epaleate, pilose. Ray florets female, sterile, or neuter; limb white, many-veined; sometimes dorsally pilose; tube sometimes laterally pilose, confluent with the sometimes laterally pilose cypsela. Disc corolla 4-lobed, glandular, sometimes pilose; lobes sometimes with short acute appendages. Stylopodium large and persistent in fruit. Cypselas ellipsoid, 3-8-ribbed. Pappus absent. Dehydrofalcarinone and dehydrofalcarinol present.

Distribution. S. Africa in the Cape. - 2 spp.
The two species of Lidbeckia are related to Inezia and

Thaminophyllum. They are held together as a pair by their similar foliage and habit. L. quinqueloba is more pubescent with pilose rays as in Inezia. On the other hand both species share a number of synapomorphies, for example the pilose receptacle, with Thaminophyllum.

L. pectinata P. Bergius

L. quinqueloba (L. f.) Cass. (L. lobata Thunb.)

83. THAMINOPHYLLUM Harvey, Fl. cap. 3: 155

(1865). Type species: T. multiflorum Harvey

Shrublets. Leaves alternate, closely set, entire, lanceolate to linear, ericoid, glandular. Capitula solitary or laxly corymbose, radiate. Receptacle convex or conical, epaleate, pilose. Ray florets female, sterile; limb white to somewhat purplepink, many-veined; tube confluent with the cypsela. Disc corolla 4-lobed, glandular; lobes with acute or rounded appendages. Stylopodium large and persistent in fruit. Cypselas ellipsoid, 3-4-angled, with large myxogenic cells in rounded, scattered groups. Pappus absent. Dehydrofalcarinone and dehydrofalcarinol present.
Distribution. S. Africa in the Cape. -3 spp .
Thaminophyllum is a small and distinct genus of ericoid South African shrublets. The sister group is Lidbeckia. The two genera differ much in foliage but have a similar floral morphology and they both have a pilose receptacle. The myxogenic cells on the cypselas are of a type different from the common Anthemideae pattern (of rows of large myxogenic cells). In Thaminophyllum the myxogenic cells are arranged in rounded groups, scattered on and hardly elevated above the epicarp. Thaminophyllum was revised by Bond (1980).

T. latifolium Bond
 T. multiflorum Harvey
 T. mundtii Harvey

12. MATRICARIINAE Bremer \& Humphries, subtrib. nov.

Type species: Matricaria recutita L.

Herbae annuae vel perennes vel suffrutices vel frutices. Capitula saepe solitaria vel raro corymbosa. Receptaculum epaleaceum vel raro paleaceum. Cypselae plerumque 5(4-6)costatae costis varie dispositis vel interdum dorsiventraliter compressae et lateraliter alatae, plerumque abaxialiter et in costis sed non adaxialiter cellulis mucilaginis instructae. Pappus plerumque adaxialiter longior, coroniformis vel auriculiformis vel e squamis discretis compositus vel nullus.

Annual or perennial herbs, shrublets or shrubs. Leaves often much dissected, sometimes few-lobed or entire or ericoid. Capitula solitary or rarely corymbose, pedunculate or rarely sessile, radiate, disciform or discoid. Receptacle variously shaped, epaleate or rarely paleate. Ray floret limb white or yellow. Outer female florets (in disciform capitula) in one or more rows, sometimes stalked. Disc or central florets 5- or 4-, rarely 3 -lobed. Cypselas generally 5(4-6)-ribbed with different rib arrangements or sometimes dorsiventrally flattened and laterally winged, generally with myxogenic cells abaxially and on the ribs but not adaxially. Pappus generally adaxially long, a corona, an auricle, of separate scales, or absent.

Distribution (Table 24). Worldwide, most genera in the Mediterranean region and in S. Africa, some Matricaria, Tripleurospermum, Cotula and Soliva species widespread as weeds. -25 genera, 252 spp.
the absence of synapomorphies with genera of other subtribes they are provisionally retained in Matricariinae. The species of those two genera were formerly classified in Pentzia and Tripleurospermum. Rennera and Oncosiphon appear as sister

Table 24 General distribution of Matricariinae and genera. $x=$ indigenous, $o=i n t r o d u c e d$.

		Eur- Asia	$\begin{aligned} & \text { C. \& E. } \\ & \text { Asia } \end{aligned}$	SW Asia	S.Eur.	N.Afr.	S.Afr.	Austr. N.Zeal.	S.Am.
Matricariinae	X	X	X	X	X	X	X	X	X
Cymbopappus							X		
Pentzia						X	X		
Marasmodes							X		
Rennera							X		
Oncosiphon	0						X		
Otospermum					X	X			
Heteromera						X			
Daveaua					X	X			
Matricaria	X	X	X	X	X	X	0	0	0
Microcephala		X	X						
Endopappus						X			
Myxopappus							X		
Foveolina							X		
Lonas					X	X			
Tripleurospermum	0	X	X	X	X	X	0	0	0
Aaronsohnia		X				X			
Leucoptera							X		
Adenoglossa							X		
Hilliardia							X		
Cotula	X	0			0	X	X	X	X
Leptinella								X	X
Soliva	X	0			O	0		X	X
Schistostephium							X		
Hippia							X		
Eriocephalus							X		

The Matricariinae is our largest subtribe with respect to the number of genera (although the Artemisiinae, with Artemisia, contains more species). It consists mainly of a large group of predominantly annual and Mediterranean genera such as Matricaria and Tripleurospermum, and the predominantly South African Cotula group. Various South African genera are related to the Eurasian/North African taxa, for example, the annual genera Adenoglossa, Myxopappus, Foveolina, and possibly Rennera and Oncosiphon, as well as the South African shrubby genera Leucoptera, Cymbopappus, Pentzia and Marasmodes.

The Cotula group is more narrowly and distinctly circumscribed here than traditionally. It comprises the last seven genera in this account, characterized by their dorsiventrally flattened fruits. Hilliardia and Eriocephalus are both isolated and must be regarded as provisionally placed here, however.

The whole subtribe is characterized by the arrangement of myxogenic cells on the cypselas, abaxially and on the ribs, but not on the adaxial surface. Furthermore, they have a pappus that is adaxially long, whether coroniform, auriculiform or of separate scales. Some genera do not have cypselas with myxogenic cells or with a pappus, for example, parts of the Cotula group. In the cladogram (Fig. 12) these two characters unite all Matricariinae, except the Cotula group, for reasons of parsimony. However, it is possible that they are synapomorphies for the whole subtribe, since they occur also within the Cotula group.

The positions of Oncosiphon and Rennera, both with epappose and non-myxogenic cypselas, are more doubtful. In
groups in the cladogram. This is because they are similar in their mutual absence of some features, viz. myxogenic cells and pappus. In future studies they may turn out not to be closely related. The matter is further discussed by Källersjö (1988).

The generic interrelationships within the subtribe as shown in the cladogram (Fig. 12) must be regarded as very preliminary. Many of the groupings are supported only by one or a few homoplasious characters, and numerous (226) equally parsimonious solutions are possible. We consider some subclades well supported, however. These include Ma3 with Cymbopappus, Pentzia and Marasmodes, Ma8 Heteromera and Daveaua, Ma9 Matricaria and Microcephala, Ma12 Myxopappus and Foveolina, Ma16 Leucoptera and Adenoglossa, Ma17 the Cotula group of genera (with the possible exclusion of Hilliardia and Eriocephalus), Ma19 with Cotula, Leptinella, and Soliva, and Ma21 with Schistostephium, Hippia, and Eriocephalus (the last genus possibly to be excluded). All those clades are retained in the strict consensus tree of all the equally parsimonious cladograms found.

Clades and characters - Fig. 12, Tables 2 and 25.
Clade Ma1 - subtribe Matricariinae
In this cladogram there are no synapomorphies for the subtribe but as explained above, characters 140 and 166 of clade Ma2 may be synapomorphies for the subtribe, with reversals in the Cotula group (Ma17). They appear as such in the alternative equally parsimonious cladograms.

Fig. 12 Cladogram (of 226 possible) of the Matricariinae produced by the $b b$ option in Hennig86. Cladogram length $=97$, consistency index $=60$, retention index $=68$.

Table 25 Data matrix for the Matricariinae. $1=$ presence, $0=$ absence, ? $=$ missing data or not applicable, $\mathrm{p}=$ polymorphic but scored as the plesiomorphic condition, $\mathrm{a}=$ polymorphic but scored as the apomorphic condition.

Clade Ma2

140 Cypselas with myxogenic cells on abaxial surface and on the ribs of the adaxial surface. This character is assumed to be secondarily lost in Rennera and Oncosiphon. Several species of Tripleurospermum are also devoid of myxogenic cells, presumably secondarily. The character occurs also within Cotula and Leptinella.

166 Pappus adaxially long. This character comprises a variety
of different but homologous pappus types. The pappus is secondarily lost in Rennera and Oncosiphon. Some species of Matricaria, Tripleurospermum and Pentzia also lack pappus, presumably secondarily.

Clade Ma3

2 Plants shrubby.

51 reversed. Floral parts without resin canals.

82 Disc corolla tube thickened in fruit. This character is widespread in Achilleinae and Leucantheminae and occurs also in other genera of Matricariinae, notably Oncosiphon and Aaronsohnia.

90 Disc corolla tube and and cypsela ribs with thick vascular strands.

Cymbopappus
There is no clear autapomorphy for this genus.
Clade Ma4
35 Capitula discoid.
Pentzia
There is no autapomorphy for this genus.

Marasmodes

34 Capitula sessile along the stems.
Clade Ma5
1 Plants annual.
Clade Ma6
73 Disc corolla lobes with dorsal appendages.
Clade Ma7
140 reversed. See clade Ma2.
172 Pappus absent in ray and disc cypselas.

Rennera

35 Capitula discoid.
153 Cypsela thick-walled and conspicuously rugose.

Oncosiphon

72 Disc corolla 4-lobed. Cotula and related genera also have 4-lobed corollas.

82 Disc corolla tube thickened in fruit.
83 Disc corolla tube very thick and brittle.
123 Cypselas with a mainly abaxial entire or toothed rim.

Otospermum

128 Cypselas with 1 abaxial and 2 lateral thick ribs and 2-3 adaxial ribs. The arrangement of the three major ribs is abaxial-lateral and thus opposite to that of Tripleurospermum and many other genera.
167 Pappus a stiff adaxial auricle.
173 Testa epidermis cells spirally arranged around the embryo. A similar testa occurs in Microcephala.

Clade Ma8
115 Ray cypselas dorsiventrally flattened with 3 adaxial ribs.
133 Cypselas with costal resin canals or sacs.

Heteromera

129 Cypselas with 1 adaxial and 2 lateral rather thick ribs. The same rib arrangement occurs in Tripleurospermum and related genera of clade Ma10.

82 Disc corolla tube thickened in fruit.
118 Ray cypselas laterally winged; wings projected to apical teeth.
171 Pappus absent in disc cypselas, but present in ray cypselas.
Clade Ma9
46 Receptacle narrowly conical to subulate.
47 Receptacle hollow.
127 Cypselas with 5 mainly adaxially arranged ribs.

Matricaria

133 Cypselas with costal resin canals or sacs.

Microcephala

149 Cypselas with rather stiff unbranched hairs of 3-8 cells with spiral wall thickenings.
173 Testa epidermis cells spirally arranged around the embryo. A similar testa occurs in Otospermum.

Clade Ma10
129 Cypselas with 1 adaxial and 2 lateral rather thick ribs. The same rib arrangement occurs also in Heteromera. Foveolina has rather weak, but similarly arranged ribs.
130 Cypselas with 2 lateral vascular strands, sometimes also with 1 adaxial strand. Tripleurospermum has a different autapomorphic type with 5 strands, with 2 abaxial strands associated with the two apical-abaxial resin sacs.

Clade Ma11

141 Cypselas with dense rows of myxogenic cells also on the corona. This character is not expressed in Foveolina.

Endopappus

41 Involucral bracts wide, flabelliform.
107 reversed. Cypselas not terete to weakly angled or flattened, but sharply angled.
112 Cypselas large, with 3 thick protruding sclerenchymatous ribs, somewhat winged in ray cypselas.

Clade Ma12

156 Cypsela wall white and spongy; pericarpic cells isodiametric with thin spiral wall thickenings. (Källersjö, 1988).
158 Cypsela wall with numerous druses in the pericarp. (Källersjö, 1988).

Myxopappus

35 Capitula discoid.

42 Involucral bracts subulate.
43 reversed. Involucral bracts without scarious margins.

Foveolina

141 reversed. See clade Ma11.
Clade Ma13
133 Cypselas with costal resin canals or sacs.
Lonas

29 Capitula densely corymbose.
35 Capitula discoid.
45 Receptacle paleate.
137 Cypselas with a single resin sac apically in the adaxial rib. Clade Ma14

75 Disc corolla lobes with central resin sacs. The character is expressed in most but not all species of Tripleurospermum, in Aaronsohnia and in Leucoptera. It reverses in Adenoglossa.

Tripleurospermum

130 reversed. See clade Ma10.
136 Cypselas abaxially and apically with 2 distinct, occasionally 1 or 3-5, resin sacs.

175 Embryo sac tetrasporic.
183 Dehydrofalcarinone and dehydrofalcarinol present. These products in polyacetylene synthesis are common in the Asteraceae but uncommon in Anthemideae, occurring also in Cotula and Eriocephalus. They may represent a secondarily simplified metabolism (Greger, 1977). The position of the character on the cladogram is uncertain because most genera of the subtribe have not been investigated chemically.

Clade Ma15
129 reversed. See clade Ma10.
Aaronsohnia
82 Disc corolla tube thickened in fruit.
Clade Ma16
24 Leaves rather fleshy, few-lobed or entire.
41 Involucral bracts wide, flabelliform.
95 Anthers with endothecial tissue partly or wholly polarized.
114 Cypselas dorsiventrally flattened. This is a traditional character of the Cotula group.

117 Cypselas laterally winged. Winged fruits occur also within the Cotula group, clade Ma17.

Leucoptera

1 reversed. See clade Ma5.
2 Plants shrubby. Several other genera in the Cotula group, as well as Pentzia and related genera, are also more or less shrubby.

Adenoglossa

15 reversed. Leaves not variously deeply lobed or divided, but entire.

25 Leaves rather fleshy, entire, linear.
52 reversed. Ray floret limb not white, but yellow.
75 reversed. See clade Ma14.
76 Disc corolla zygomorphic with 2 smaller adaxial lobes with marginal resin canals extending from the base of the corolla and with 3 larger abaxial lobes.

94 Anthers with an apical resin sac.

Clade Ma17 - The Cotula group of genera
72 Disc corolla 4-lobed. Some Cotula and Soliva species have 3-lobed corollas, another step in the reduction of the basically 5-lobed corolla. Hippia and Eriocephalus have 5-lobed corollas and the character is thus assumed to be reversed in these two genera. Oncosiphon also has 4 -lobed corollas.

130 Cypselas with 2 lateral vascular strands, sometimes also with 1 adaxial strand.

172 Pappus absent in ray and disc cypselas.
177 Chromosome number $x=10$. A variety of chromosome numbers are known from Cotula but 10 appears to be the base number. Most of the related genera are not investigated karyologically but Hilliardia also has $\mathrm{x}=10$. Eriocephalus, however, has $x=9$, the plesiomorphic base number of the tribe.

183 Dehydrofalcarinone and dehydrofalcarinol present. Most of the related genera have not been investigated chemically. However, these substances have been found also in Tripleurospermum. See further comments under that genus.

Hilliardia

2 Plants shrubby.
51 reversed. Floral parts without resin canals.
111 Cypselas subglobose, with 2-3 very thin lateral-adaxial ribs.

155 Cypsela wall very thin, translucent and showing brownish black, rounded, very thick-walled testa epidermis cells.

Clade Ma18

114 Cypselas dorsiventrally flattened.
Clade Ma19
117 Cypselas laterally winged.
133 Cypselas with costal resin canals or sacs.
Note: Leptinella and Soliva probably have their sister group(s) within Cotula as discussed under these genera. This is based on information other than that used to construct the cladogram. Thus Cotula could be paraphyletic and the characters appearing for Cotula in the cladogram should rather be interpreted as defining this clade, including all three genera, with reversals in Leptinella and Soliva.

Cotula

62 Outer florets stalked. This peculiar receptacular structure is a classical character for Cotula, though not particularly well developed in some species. Quite clearly it occurs also in Schistostephium and it is tempting to assume that it is a character for clade Ma18 although secondarily lost in the other genera of that clade. With this cladogram it is more parsimoniously interpreted as a parallelism between the two genera, however.
Clade Ma20
104 Disc floret style-branches fused. The same character occurs in Hippia and Eriocephalus.

Leptinella

70 Corolla inflated with a hollow space between outer surface and inner layer.

Soliva

1 Plants annual. Many species of Cotula are also annuals.
34 Capitula sessile along the stems.
36 Capitula disciform. Most species of Cotula as well as Hippia and Schistostephium are also disciform and it may be that the character is a synapomorphy for these genera. It is in conflict with other characters, however, and the presence of plesiomorphic, radiate species of Cotula, as well as the inclusion of Eriocephalus in clade Ma18, makes interpretation difficult.
63 Outer female florets in several rows. This character also occurs within Cotula, possibly indicating the sister group of Soliva within Cotula. See note under clade Ma19.

67 Outer female florets without corollas.
101 Style persistent and spinescent in fruit.
133 reversed. See clade Ma19.
Clade Ma21
2 Plants shrubby.
29 Capitula densely corymbose.
51 reversed. Floral parts without resin canals.
177 reversed. See clade Ma17.
Schistostephium
36 Capitula disciform. See comment under Soliva. Some Schistostephium species are discoid, here considered a further development from the disciform condition.

62 Outer florets stalked. See comment under Cotula.
Clade Ma22
72 reversed. See clade Ma17.
104 Disc floret style-branches fused.

Hippia

36 Capitula disciform. See comment under Soliva.
117 Cypselas laterally winged.

Eriocephalus

40 Involucral bracts in 2 unequal series.
45 Receptacle paleate.
50 Receptacular paleae pilose.
84. CYMBOPAPPUS B. Nord. in Bot. Notiser 129: 150 (1976). Type species: C. lasiopodus (Hutch.) B. Nord. (C. piliferus (Thell.) B. Nord.).

Shrubs or half-shrubs. Leaves alternate, variously lobed or dentate, more or less ericoid. Capitula solitary, pedunculate, radiate. Receptacle convex to hemispherical or subconical, epaleate. Ray florets female, fertile; limb white or pinkish. Disc corolla 5 -lobed; tube swollen and with thick vascular strands. Cypselas 5 -ribbed, with large 2-celled glands and with myxogenic cells mainly abaxially; ribs with thick vascular
strands. Pappus an oblique, adaxially longer whitish corona or cup, or of one large adaxial and one smaller abaxial scale.

Distribution. S. Africa in the Cape, Transkei, and Transvaal. -4 spp.
Cymbopappus based on species formerly classified as Chrysanthemum and Marasmodes (Nordenstam, 1976) is close to Pentzia. They are distinguished by Cymbopappus being radiate and Pentzia discoid. Hence the species of Cymbopappus have not been usually associated with Pentzia although Nordenstam (1976) noted the relationship. Cymbopappus also has an almost tubular pappus but a similar pappus occurs in species of Pentzia. The distinction between these two genera deserves further study.
C. adenosolen (Harvey) B. Nord.
C. hilliardiae B. Nord.
C. piliferus (Thell.) B. Nord.
C. lasiopodus (Hutch.) B. Nord.
85. PENTZIA Thunb. in Prodr. pl. cap. : 145 (1800).

Type species: P. crenata Thunb. (P. dentata (L.) OK.).
Shrubs. Leaves alternate, variously pinnatisect, occasionally entire or apically dentate, more or less ericoid. Capitula solitary or corymbose, pedunculate, discoid. Receptacle convex or hemispherical to conical, epaleate. Corolla 5-lobed; tube generally swollen and with thick vascular strands. Cypselas 5-ribbed, often with large 2-celled glands and with myxogenic cells abaxially and on the ribs; ribs with thick vascular strands. Pappus an adaxial auricle, or an oblique adaxially longer cup, or of free adaxially longer whitish scales, sometimes absent.

Distribution. S. Africa mainly in the Cape, also in Namibia, two species (P. hesperidum and P. monodiana) also in N. Africa in Morocco and Algeria. - 23 spp .

Traditionally (sensu Hutchinson, 1916a,b) Pentzia was all South African discoid Anthemideae with pinnatisect leaves and an epaleate receptacle. Two North African, typical Pentzia species, have also been described. Källersjö (1988) has recently re-classified Pentzia and most South African species included in Tripleurospermum have been assigned to a number of genera, including Pentzia, Oncosiphon, Myxopappus and Foveolina. Pentzia now comprises discoid shrubs (no annuals) with more or less ericoid leaves and 5-ribbed, myxogenic cypselas.

The separation of Pentzia from the small genera Cymbopappus and Marasmodes is problematical. In future it might turn out that the latter genera have their sister group within a presently paraphyletic Pentzia.

Clearly the generic delimitation of Pentzia is in need of detailed investigation, even after the removal of the annuals, as was undertaken by Källersjö.

At the species level Pentzia is also in need of revision. Some of the 'species' in the list below are probably conspecific but the list is taken from Källersjö (1986). References are also given to species described after Hutchinson's (1916a,b) revision since they were not included in his key.

[^2]P. calva S. Moore
P. cooperi Harvey
P. dentata (L.) OK.
P. elegans DC.
P. globosa Less.
P. hesperidum Maire \& Wilczek - Note: Description in Maire, 1936.
P. incana (Thunb.) OK.
P. lanata Hutch.
P. monocephala S. Moore
P. monodiana Maire \& Wilczek - Note: Description in Maire, 1929.
P. nana Burch.
P. peduncularis B. Nord. - Note: Description in Nordenstam, 1987.
P. pinnatisecta Hutch.
P. punctata Harvey
P. quinquefida (Thunb.) Less.
P. sphaerocephala DC.
P. spinescens Less.
P. tomentosa B. Nord. - Note: Description in Nordenstam, 1967.
P. tortuosa (DC.) Fenzl ex Harvey
P. viridis Kies - Note: Description in Kies, 1945.

86. MARASMODES DC., Prodr. 6: 136 (1838). Type species: M. polycephalus DC.

Shrubs. Leaves alternate, entire or occasionally lobed, linear, small, ericoid. Capitula small, closely aggregated at the stems, rarely solitary, discoid. Receptacle epaleate. Corolla 5-lobed, glandular; tube swollen and with thick vascular strands. Anthers short and comparatively wide. Cypselas 5-ribbed, glandular, with myxogenic cells mainly abaxially; ribs with thick vascular strands. Pappus of 7-10, oblong, flat, whitish, adaxially longer scales.

Distribution. S. Africa in the Cape. -4 spp .
Marasmodes is a genus of ericoid shrubs characterized by small and few-flowered, aggregated and sessile capitula and a pappus of several, whitish scales. Pentzia generally has larger, pedunculate capitula and a coroniform/auriculate pappus, only rarely of a few separate scales. Otherwise Marasmodes is very similar to many species of Pentzia and it seems clear that Marasmodes has its sister group within Pentzia. In P. dentata the capitula are small and arranged in groups and the pappus is more or less cleft approaching the condition in Marasmodes. Adenosolen tenuifolius from eastern Cape and described by de Candolle (1837) was tentatively retained by Harvey (1865), although he considered it very similar in habit to his Marasmodes adenosolen (Cymbopappus adenosolen) from south-western Cape. The genus Adenosolen was reduced by later authors to a synonym of Marasmodes. However, it appears that Adenosolen tenuifolius is neither a Marasmodes nor a Cymbopappus, since according to the description it has cypselas without a pappus. The matter requires further investigation.

Marasmodes was revised by Hutchinson (1917) but his key to the species cannot be recommended. The distinction between M. oligocephalus and M. polycephalus is better explained by Harvey (1865). M. adenosolen Harvey is Cymbopappus adenosolen (Harvey) B. Nord. Hutchinson did not see the type, and erroneously accepted the identification of
another collection (Schlechter 7899) as M. adenosolen. That collection represents M. oligocephalus.
M. dummeri Bolus ex Hutch.
M. oligocephalus DC.
M. polycephalus DC.
M. undulata Compton - Note: Description in Compton, 1946.

87. RENNERA Merxm. in Mitt. bot. StSamml. Münch. 2: 335 (1957). Type species: R. limnophila Merxm.

Annual herbs. Leaves alternate, pinnatisect. Capitula solitary, pedunculate, discoid. Receptacle hemispherical, epaleate. Corolla 5-lobed, with a narrow tube and a wide enervate limb; lobes with dorsal appendages. Cypselas obovoid or 5 -angled, thick-walled and conspicuously tuberculate to rugose, apically sometimes with a thick, spreading to revolute rim. True pappus absent.

Distribution. S. Africa in Namibia. -3 spp .

Rennera is characterized by the specialized, thick-walled cypselas. The thick apical rim, called a 'pappus' by Merxmüller (1957), is present only in the type species. It does not seem to be homologous with the scarious pappus of Pentzia and many other Anthemideae. The thick spongy cypsela walls are presumably a dispersal adaptation; R. limnophila grows on temporarily submerged flats ('pans' and 'vleis'). Two of the species were recently transferred to Rennera from Pentzia by Källersjö (1988).

The position of Rennera is unclear. It is not necessarily closely related to Pentzia (as circumscribed here), but provisionally placed in the same subtribe, Matricariinae. In the cladogram (Fig. 12) it is grouped with other annual genera from the Mediterranean and South Africa. The position as sister group to Oncosiphon is debatable, however.
R. eenii (S. Moore) Källersjö (Pentzia eenii S. Moore)
R. limnophila Merxm.
R. laxa (Bremek. \& Oberm.) Källersjö (Pentzia laxa Bremek. \& Oberm.)
88. ONCOSIPHON Källersjö in Bot. J. Linn. Soc.

96:310 (1988). Type species: O. piluliferum (L. f.) Källersjö.
Annual herbs. Leaves alternate, variously pinnatisect. Capitula solitary or corymbose, pedunculate, radiate or discoid. Receptacle flat to convex or conical to subglobose, epaleate. Ray florets female, fertile; limb white. Disc corolla 4-lobed; with a very much swollen and brittle tube and a campanulate, partly enervate limb; lobes with dorsal appendages. Cypselas 4 -ribbed, without myxogenic cells, with a mainly abaxial entire or toothed rim. Pappus absent.

Distribution. S. Africa mainly in the Cape, also in Namibia. - 8 spp.

The species of this genus were formerly classified in Pentzia and Tripleurospermum. The position of the genus is difficult to assess. It may be related to other annual genera of subtribe Matricariinae, where it is provisionally placed. A relationship to some other part of Anthemideae is not evident. The swollen corolla tube and absence of pappus is characteristic also of subtribe Achilleinae, but Oncosiphon is different at
least by its epaleate receptacle. The unusual chromosome numbers $2 \mathrm{n}=12$ and $2 \mathrm{n}=16$ (Nordenstam 1967, 1969; Mitsuoka \& Ehrendorfer, 1972) are reported from species of this genus.
O. africanum (P. Bergius) Källersjö (Matricaria capensis L., Matricaria hirta (Thunb.) DC.)
O. glabratum (Thunb.) Källersjö
O. grandiflorum (Thunb.) Källersjö
O. intermedium (Hutch.) Källersjö
O. piluliferum (L. f.) Källersjö (Matricaria globifera (Thunb.) Fenzl ex Harvey, Pentzia globifera (Thunb.) Hutch.)
O. sabulosum (Wolley-Dod) Källersjö
O. schlechteri (Bolus) Källersjö
O. suffruticosum (L.) Källersjö (Matricaria multiflora Fenzl ex Harvey, Pentzia tanacetifolia (L.) Hutch.)
89. OTOSPERMUM Willk. in Bot. $Z \operatorname{tg}$ 22: 251
(1864). Type species: O. glabrum (Lagasca) Willk.

An annual herb. Leaves alternate, pinnatisect. Capitula solitary or laxly corymbose, pedunculate, radiate. Receptacle conical, epaleate. Ray florets female, fertile; limb white; cypselas curved, basally connate to inner involucral bracts, with 1 abaxial and 2 lateral very thick ribs and 2-3 adaxial ribs, with myxogenic cells on the ribs; pappus an adaxial stiff auricle. Disc corolla 5-lobed; lobes with appendages; cypselas slightly curved, with 1 abaxial and 2 lateral thick ribs and 2 adaxial ribs, with myxogenic cells on the ribs; testa of thick-walled, much elongated and spirally arranged cells; pappus an adaxial stiff auricle, shorter than in ray cypselas.
Distribution. SW Europe in Spain and Portugal, N. Africa in Morocco, Algeria, and Tunisia. - Monotypic.
The cypselas of Otospermum are unique in the Anthemideae. The three strong ribs are abaxially and laterally oriented, not adaxially and laterally as in Matricaria and some other genera. Nevertheless Otospermum seems best placed together with the other annual genera of Matricariinae.

90. HETEROMERA Pomel, Nouv. mat. fl. atl.: 60 (1874). Type species: H. fuscata (Desf.) Pomel.

An annual herb. Leaves alternate, pinnatisect. Capitula solitary, rather long-pedunculate, radiate. Receptacle convex, epaleate. Ray florets female; limb white, many-veined; cypselas dorsiventrally flattened, with 3 adaxial ribs with 1-3 resin canals; pappus a large adaxially longer scarious corona. Disc corolla 5 -lobed; lobes with appendages; cypselas 5 -ribbed with 1 adaxial and 2 lateral stronger ribs and 2 abaxial weaker ribs and with $3-5$ resin sacs apically in the ribs, abaxially and on the ribs covered with myxogenic cells; pappus of 7-10 obovate, rounded, whitish, abaxially smaller scales.

Distribution. N. Africa in Algeria, Tunisia and Libya. Monotypic.

Heteromera fuscata, often known as Chrysanthemum fuscatum Desf., has sometimes been associated with two species known as Chrysanthemum deserticola (Murb.) F. Buxbaum and Chrysanthemum trifurcatum Desf. These have vallecular resin canals, however, and are here transferred to Chrysanthoglossum (Leucantheminae).

Heteromera fuscata has resin sacs in the ribs as in Aaron-
sohnia, Matricaria, Daveaua, and related genera. Daveaua appears to be the sister group. Both genera have the same kind of specialized ray cypselas, different from the disc cypselas. Alavi (1988) has used an eclectic treatment of the Matricariinae similar to that of Schultz Bipontinus (1860). In his treatment Heteromera is included in Tripleurospermum.
H. philaenorum Maire \& Weller, which is more pubescent than the type species and has connate pappus scales, is probably a synonym of H. fuscata (Jeffrey, 1979b).

91. DAVEAUA Willk. ex Mariz in Bolm Soc. broteriana 9: 243 (1891). Type species: D. anthemoides Mariz.

An annual herb. Leaves alternate, pinnatisect. Capitula solitary, pedunculate, radiate. Receptacle conical, epaleate. Ray florets female; limb white; cypselas dorsiventrally flattened, with 3 adaxial ribs, laterally winged; wings projected to apical teeth; pappus a large adaxial auricle. Disc corolla 5-lobed; tube basally swollen; lobes with appendages; cypselas 5 -ribbed with $3-5$ resin sacs apically in the ribs and with myxogenic cells; pappus absent.

Distribution. SW Europe in Portugal and N. Africa in Morocco. - Monotypic.
Daveaua is apparently the sister group of Heteromera, both with the same kind of specialized ray cypselas.
The shape of the cypsela resin sacs is interesting, being intermediate between the elongated canals of Aaronsohnia, Matricaria and Heteromera and the rounded sacs of Lonas and Tripleurospermum, indicating the homology of these structures.
> 92. MATRICARIA L., Sp. pl.: 891 (1753). Type species: M. recutita L. (Matricaria chamomilla L. (1755), non L. 1753 quae est M. inodora L. (1763), Chamomilla Gray).

Annual herbs. Leaves alternate, pinnatisect. Capitula solitary, more or less pedunculate, radiate or disciform. Receptacle conical to subulate, hollow, epaleate. Ray florets female, fertile, with or without a white limb. Disc corolla 4or 5 -lobed; tube swollen in fruit; lobes rarely with resin canals. Cypselas slightly dorsiventrally compressed, with 5 mainly adaxially arranged thin ribs sometimes with resin canals, abaxially and on the ribs covered with myxogenic cells. Pappus absent or a small corona or sometimes, especially in ray cypselas, an adaxial auricle.

Distribution. N. hemisphere, widespread in Europe, Middle East, temperate Asia, N. Africa and N. America, some species (e.g. M. recutita) widespread as weeds also in the S. hemisphere. - 7 spp .
Matricaria has characteristic, adaxially 5-ribbed fruits, and is thus clearly distinct from Tripleurospermum, with which it has been confused both taxonomically and nomenclaturally (see Pobedimova, 1961; Jeffrey, 1979a; Xifreda, 1985; Kergeulen et al., 1987). The question of typification was initially taken up by Hylander (1945) who considered that the name Matricaria chamomilla L . should be retained, although the description had been applied to the species now known as Tripleurospermum inodorum (L.) Schultz-Bip. in Linnaeus's Species plantarum (1753). Similarly, Toman \& Stary (1965)
argued for the retention of Matricaria chamomilla L. on the grounds that it had been widely used in pharmalocogical literature. The selection of the Hortus Cliffortianus Linnean specimen of M. chamomilla L . as the lectotype was made by Grierson in Davis (1975) on the grounds that the phrase name 'Matricaria foliis supra decompositis setaceis pedunculis solitariis' remained constant with the name Matricaria chamomilla L. in all of Linnaeus's works. However, the Hortus Cliffortianus specimen of M. chamomilla has coronate cypselas and does not therefore agree with Linnaeus's generic concept of Matricaria. The next choice of generic lectotypification, Matricaria recutita L., was made by Pobedimova, a species which agrees well with the generic description, because of its ecoronate cypselas (Jeffrey, 1979a) and therefore is utilized here.
The typification of Matricaria as based on Chamomilla vulgaris Gray was discussed by Rauschert (1974) who argued that Matricaria had been misapplied and must therefore be rejected. He argued that Chamomilla was the correct name for Matricaria and that Matricaria should be applied as the correct name for Tripleurospermum on the basis that M. chamomilla L. (1753) is equivalent to M. perforata Mérat. He accordingly made the relevant new combinations in Tripleurospermum and Chamomilla.

However, we reject Rauschert's argument since the typification of M. chamomilla L. (Grierson in Davis, 1975) and M. recutita L . are tied with the same generic concept. Indeed, Grierson considered that the two species were mere varieties of the same species. We accept Jeffrey's (1979a) argument that because the type species was clearly designated by Pobedimova (1961) there is no confusion as to the correct application of Linnaeus's Matricaria and indeed the occasional misapplication to Tripleurospermum has not involved either type. Hence, M. recutita L. is the type species of Matricaria.
Matricaria lasiocarpa Boiss. (Chamomilla lasiocarpa (Boiss.) Rauschert) is a species which we place in Microcephala. This genus has a number of autapomorphies not shared by Matricaria. Matricaria may be paraphyletic with Microcephala excluded.

Tanacetum ledebourii (Schultz-Bip.) Schischk. from central Asia, also known as Matricaria songarica, is transferred into Matricaria. Tzvelev in Flora URSS (Komarov, 1961) included it in a monotypic, annual section of Cancrinia as C. discoidea. However, it has fruits typical of Matricaria and also agrees with Matricaria in several other characters.
M. aurea (Loefl.) Schultz-Bip., (Chamomilla aurea (Loefl.) Gay ex Cosson \& Kralik). Mediterranean, S. Europe, throughout N. Africa, the Middle East, and SW Asia to C. Asia.
${ }^{*}$ M. macrotis Rech. f. (Chamomilla macrotis (Rech. f.) Rauschert). Turkey.
M. matricarioides Porter ex Britton (M. discoidea DC., Chamomilla suaveolens (Pursh) Rydb.). W. North America, widespread as a cosmopolitan weed.
M. occidentalis Greene (Chamomilla occidentalis (Greene) Rauschert). W. North America.
M. recutita (L.) Rauschert (Matricaria chamomilla L. (1755) non L. 1753 (= Matricaria inodora L., Tripleurospermum inodorum (L.) Schultz-Bip.). Throughout Europe and most of temperate Asia, widespread as a cosmopolitan weed.
M. songarica Bunge (Tanacetum ledebourii Schultz-Bip.,

Pyrethrum discoideum Ledeb.). C. Asia, Mongolia and China in Sinkiang.
${ }^{*}$ M. tzvelevii Pobed. (Chamomilla tzvelevii (Pobed.) Rauschert). Krym.

93. MICROCEPHALA Pobed. in Bot. Mater. Gerb.

 bot. Inst. V. A. Komarova 21: 356 (1961). Type species: M. lamellata (Bunge) Pobed.Annual herbs. Leaves alternate, pinnatisect. Capitula solitary, rather long-pedunculate, radiate or discoid. Receptacle conical, hollow, epaleate. Ray florets female, fertile; limb white or pink. Disc corolla 5-lobed. Cypselas with 5 adaxially arranged ribs, abaxially and on the ribs with myxogenic cells, laterally with rather stiff, unbranched hairs of 3-8 cells with spiral cell wall thickenings; testa of much elongated spirally arranged cells. Pappus a large deeply fimbriate, whitish corona, in ray cypselas abaxially split to the base thus forming a large adaxial, deeply fimbriate auricle.

Distribution. C. and middle Asia, Iran, Afghanistan Pakistan. -4 spp.

Microcephala is well characterized by its peculiar cypsela hairs. The hair cells have spiral wall thickenings and are rather stiff. The five adaxially arranged cypsela ribs indicate a relationship with Matricaria. Apparently they are sister groups, or Microcephala may have its sister group within a paraphyletic Matricaria. In habit Microcephala is very similar to Matricaria.
M. afghanica Podl.
M. deserticola Podl.
M. lamellata (Bunge) Pobed. (Chamomilla lasiocarpa (Boiss.) Rauschert, M. lasiocarpa (Boiss.) Pobed., M. turcomanica (Winkler) Pobed.).
M. subglobosa (H. Kraschen.) Pobed.

94. ENDOPAPPUS Schultz-Bip. in Bonplandia,

 Hannover 8: 369 (1860). Type species: E. macrocarpus Schultz-Bip.An annual herb. Leaves alternate, pinnatisect. Capitula solitary, rather long-pedunculate, radiate. Involucral bracts with wide scarious margins. Receptacle flat, epaleate. Ray florets female, fertile; limb white or yellow, many-veined. Disc corolla 5 -lobed. Cypselas comparatively large, with 1 adaxial and 2 lateral thick sclerenchymatous and much protruding ribs, in ray cypselas somewhat winged, abaxially and on the ribs and pappus with myxogenic cells. Pappus a stiff short corona.

Distribution. N. Africa in Morocco, Algeria and Tunisia. Monotypic.

Endopappus has no obvious close relatives but the cypsela shape with three adaxially and laterally thick ribs is similar to that of Tripleurospermum. Endopappus has no cypsela resin sacs, however. Nevertheless it is perhaps best considered together with Tripleurospermum. The South African Myxopappus and Foveolina are also possible relatives.

The species is sometimes known as Chrysanthemum macrocarpum Cosson \& Kralik or Pyrethrum macrocarpum (Cosson \& Kralik) Alavi.

95. MYXOPAPPUS Källersjö in Bot. J. Linn. Soc. 96:

 314 (1988). Type species: M. acutilobus (DC.) Källersjö.Annual herbs. Leaves alternate, variously pinnatisect. Capitula solitary, pedunculate, discoid. Involucral bracts almost subulate, without scarious margins. Receptacle convex to conical, epaleate. Disc corolla 4- or 5-lobed. Cypselas with 1 adaxial and 2 lateral thick ribs, with myxogenic cells abaxially and on the ribs; cypsela wall white, spongy and containing numerous druses. Pappus an apical corona, covered with myxogenic cells.

Distribution. S. Africa in the Cape, Namibia. - 2 spp.
The two species of Myxopappus were recently removed from Pentzia by Källersjö. They seem related to Foveolina, another genus described by Källersjö. Both Myxopappus and Foveolina have fruits similar to those of Tripleurospermum and Endopappus, and are hence grouped together with them in subtribe Matricariinae. The unusual chromosome number $2 n=14$ was reported by Nordenstam (1967).

M. acutilobus (DC.) Källersjö

M. hereroensis (O. Hoffm.) Källersjö (Pentzia galpinii Hutch.)

96. FOVEOLINA Källersjö in Bot. J. Linn. Soc. 96: 316 (1988). Type species: F. dichotoma (DC.) Källersjö.

Annual herbs. Leaves alternate, pinnatisect. Capitula solitary, pedunculate, radiate, disciform or discoid. Receptacle flat to convex to conical, epaleate. Ray florets female, fertile; limb white; cypselas adaxially somewhat flattened and inconspicuously 3 -ribbed, abaxially rounded and covered with myxogenic cells; cypsela wall adaxially white and spongy with numerous druses, abaxially very thin and transparent; pappus white and spongy, an adaxial auricle or occasionally coroniform. If disciform, outer female florets filiform with cypselas almost terete, without myxogenic cells and without pappus; cypsela wall spongy and conspicuously wrinkled. Central florets with corolla 4- or 5-lobed; tube often basally dilated or saccate; cypselas either as in ray florets and with a pappus, or obovoid with a very thin cypsela wall all around and without a pappus, always abaxially with myxogenic cells.

Distribution. S. Africa in the Cape, Namibia. -5 spp.
Foveolina comprises species formerly in Pentzia and 'Matricaria'. The genus is related to Myxopappus, Tripleurospermum and other genera in subtribe Matricariinae. Two of the species, F. albidiformis and F. schinziana, are somewhat aberrant and resemble species of Cotula. The matter is discussed in detail by Källersjö (1988).
F. albida (DC.) Källersjö (Pentzia annua DC.)
F. albidiformis (Thell.) Källersjö (Pentzia membranacea Hutch.)
F. dichotoma (DC.) Källersjö
F. schinziana (Thell.) Källersjö
F. tenella (DC.) Källersjö
97. LONAS Adans., Fam. pl. 2: 118 (1763). Type species: Santolina annиa L. (L. аппиа (L.) Vines \& Druce).
A glabrous annual herb. Leaves alternate, pinnatisect. Capitula in pedunculate dense corymbs, discoid. Receptacle elongated, paleate; paleae somewhat canaliculate, with a central resin canal. Corolla 5-lobed. Cypselas with 1 adaxial and 2 lateral vascular strands and ribs, with a single resin sac apically in the adaxial rib, abaxially and on the ribs covered with myxogenic cells. Pappus a scarious fimbriate corona.
Distribution. Mediterranean, S. Europe in Italy and N. Africa in Morocco, Algeria, and Tunisia. - Monotypic.
The position of Lonas is difficult to assess but we have placed it in the Matricariinae together with Tripleurospermum and related genera because of their similar fruits. Lonas differs by its densely corymbose capitula and by its paleate receptacle, both uncommon characters in Matricariinae. However, the arrangement of the myxogenic cells on the cypselas is typical of this subtribe.

98. TRIPLEUROSPERMUM Schultz-Bip.,
 Tanaceteen: 31-34 (1844a). Type species:
 Tripleurospermum inodorum Schultz-Bip.

Annual or perennial herbs. Leaves alternate, pinnatisect. Capitula solitary or corymbose, pedunculate, radiate, disciform or discoid. Receptacle convex to conical, epaleate. Ray florets female; limb white or rarely pale pink. Disc corolla 5-lobed; lobes each usually with a resin sac. Cypselas triquetrous with 1 adaxial and 2 lateral usually thick whitish ribs and sometimes 1-2 abaxial thin ribs, often rugose or tuberculate abaxially and between the ribs, sometimes with myxogenic cells, abaxially and apically with 2 distinct, occasionally 1 or $3-5$, resin sacs. Pappus a corona or auricle, or of few scales, sometimes absent. Embryo sac tetrasporic. Flavonol 7-glycosides and dehydrofalcarinone and dehydrofalcarinol present.
Distribution. Europe and temperate Asia, a few species also in N. America (T. maritimum and T. perforatum naturalized) and N. Africa (T. auriculatum), one species (T. perforatum) widespread as a weed; most species in SE Europe and SW Asia. - 38 spp.
Despite the comparatively large number of species, Tripleurospermum as presently circumscribed is a distinct genus with characteristic 3 -ribbed cypselas with 2 abaxial-apical resin sacs. Chemically about 30 species have been investigated for flavonol glycosides and they all contain 7-glycosides rather than the common 3-glycosides as, for example, in Matricaria (Greger, 1975, 1977). Species of Tripleurospermum embryologically investigated have a tetrasporic embryo sac.

In habit Tripleurospermum is similar to many other Anthemideae. The genus was earlier more widely and less distinctly circumscribed, so as to also include Matricaria. However, we keep the genus distinct following Pobedimova in Flora USSR (Komarov, 1961) and Grierson in Flora of Turkey (Davis, 1975). Tripleurospermum as here understood follows the original concept of Schultz Bipontinus (1844a). The South African species described under Matricaria are now transferred to other genera (Källersjö, 1988).

As described under Matricaria Rauschert (1974) and Kay (1976) missapplied the name Matricaria to refer exclusively to
the species of Tripleurospermum. Because Rauschert (1974) transferred a number of species from Tripleurospermum to Matricaria we have cited a more complete synonomy. The species list is compiled from the standard floras with later species and species described from other areas added, for example E. Hossain in Flora of Turkey (Davis, 1975).
T. auriculatum (Boiss.) Rech. fil. (Matricaria auriculata (Boiss.) Ball). Middle East.
T. baytopianum E. Hossain. Turkey.
T. breviradiatum (Ledeb.) Pobed. (Matricaria breviradiata (Ledeb.) Rauschert). W. Siberia.
T. callosum (Boiss. \& Heldr.) E. Hossain (Chamaemelum callosum Boiss. \& Heldr.). Turkey.
T. caucasicum (Willd.) Hayek (Matricaria caucasica (Willd.) Poiret). SE Europe, Turkey, Caucasus, Middle East, Iraq, Iran, Afghanistan.
T. colchicum (Manden.) Pobed. (Matricaria colchica (Manden.) Rauschert). Caucasus.
*T. conoclinium (Boiss. \& Balansa) Hayek (Matricaria conoclinia (Boiss. \& Balansa) Nyman). Turkey.
*T. corymbosum E. Hossain (non Matricaria corymbosa Desr. in Lam.). Turkey.
${ }^{*}$ T. daghestanicum (Rupr. ex Boiss.) Bremer \& Humphries, comb. nov. Basionym: Chamaemelum daghestanicum Rupr. ex Boiss., Fl. orient. 3: 334 (1875) (Matricaria daghestanica (Rupr. ex Boiss.) Rauschert).
T. decipiens (Fischer \& C. Meyer) Bornm. (Matricaria decipiens (Fischer \& C. Meyer) K. Koch). Turkey, Caucasus, Iran.
T. disciforme (C. Meyer) Schultz-Bip. (Matricaria disciformis (C. Meyer) DC.). Turkey, Caucasus, Iraq, Iran, Afghanistan, Pakistan, C. Asia.
*T. elongatum (Fischer \& C. Meyer ex DC.) Bornm. (Matricaria elongata (Fischer \& C. Meyer ex DC.) Hand.-Mazz., M. australis (Pobed.) Rauschert, Tripleurospermum australe Pobed.). Turkey, Caucasus. - Note: T. australe was included as a doubtful synonym by E. Hossain in Flora of Turkey (Davis, 1975).
${ }^{*}$ T. fissurale (Sosn.) E. Hossain. Turkey.
*T. froedinii Rech. f. (Matricaria froedinii (Rech. f.) Rauschert). Iran.
*T. grossheimii (Fed.) Pobed. (Matricaria grossheimii (Fed.) Rauschert). Caucasus.
T. heterolepis (Freyn \& Sint.) Bornm. (Chamaemelum heterolepis Freyn \& Sint.). Turkey.
${ }^{*}$ T. homogamum G. X. Fu. China.
T. hygrophilum (Bornm.) Bornm. (Matricaria hygrophila (Bornm.) Rauschert). Turkey.
T. karjaginii (Manden. \& Sof.) Pobed. (Matricaria karjaginii (Manden. \& Sof.) Rauschert). Caucasus.
T. kotschyi (Boiss.) E. Hossain (Chamaemelum kotschyi Boiss.). Turkey.
T. limosum (Maxim.) Pobed. (Matricaria limosa (Maxim.) Kudo). Far East, Japan, China.
T. maritimum (L.) K. Koch (Matricaria maritimum L. Tripleurospermum ambiguum (Ledeb.) Franchet \& Savat., T. phaeocephalum (Rupr.) Pobed., T. subpolare Pobed.). Throughout most of Europe, temperate Asia and in North America. - Note: in Flora europaea three subspecies are recognized: ssp. maritimum, ssp. phaeocephalum (Rupr.) Rauschert, and ssp. subpolare (Pobed.) Rauschert. The related weedy species T. perforatum ($=T$. inodorum) has been kept separate.
T. microcephalum (Boiss.) Bornm. (non Matricaria microcephala C. Koch, M. armeniaca Rauschert). Turkey, Iran, Iraq.
T. monticolum (Boiss. \& Huet) Bornm. (Matricaria monticola (Boiss. \& Huet) Rauschert). Turkey.
T. oreades (Boiss.) Rech f. (Matricaria oreades Boiss., Matricaria halepensis Rauschert, Matricaria szowitzii (DC.) Rauschert, Tripleurospermum szowitzii (DC.) Pobed., Matricaria tchihatchewii (Boiss.) Voss, Tripleurospermum tchihatchewii (Boiss.) Bornm.). Turkey, Middle East, Caucasus, Iran. - Note: Matricaria halepensis was a new name for Chamaemelum grandiflorum Boiss. \& Hausskn., the epithet of which is already occupied in Matricaria. However, this species as well as the others listed in the synonymy above were reduced by E. Hossain in Flora of Turkey (Davis, 1975).
T. parviflorum (Willd.) Podeb. (Matricaria parviflora (Willd.) Poiret). E. Europe in Russia, Turkey, Caucasus, Middle East, Iraq, Iran, Pakistan, C. Asia.
T. perforatum (Mérat) Lainz (Matricaria perforata Mérat, Matricaria inodora L., Tripleurospermum inodorum (L.) Schultz-Bip.). Throughout most of Europe and temperate Asia, widespread as a weed especially in North America etc. - Note: See T. maritimum.
${ }^{*}$ T. pichleri (Boiss.) Bornm. (Matricaria pichleri (Boiss.) Rauschert). Turkey.
T. repens (Freyn \& Sint.) Bornm. Turkey.
T. rosellum (Boiss. \& Orph.) Hayek (Matricaria rosella (Boiss. \& Orph.) Nyman, Matricaria lesbiaca (Candargy) Rauschert, Tripleurospermum lesbiacum (Candargy) Rech. f.). SE Europe in Greece, Turkey. - Note: The synonymous names are from E. Hossain in Flora of Turkey (Davis, 1975).
*T. rupestre (Sommier \& Levier) Pobed. (Matricaria rupestris (Sommier \& Levier) Rauschert). Caucasus.
T. sevanense (Manden.) Pobed. (Matricaria sevanensis (Manden.) Rauschert). Turkey, Caucasus, Iran.
T. subnivale Pobed. (Matricaria subnivalis (Pobed.) Rauschert). Caucasus.
T. tempskyanum (Freyn \& Sint.) Hayek (Matricaria tempskyana (Freyn \& Sint.) Rauschert). SE Europe in Greece.
T. tenuifolium (Kit.) Freyn (Matricaria trichophylla (Boiss.) Boiss.). SE and C. Europe, Turkey.
T. tetragonospermum (Schum.) Pobed. (Matricaria tetragonosperma (Schum.) Hara \& Kitam.). W. Siberia, Far East, Japan, China.
T. transcaucasicum (Manden.) Pobed. (Matricaria transcaucasica (Manden.) Rauschert). Turkey, Caucasus.
*T. tzvelevii Pobed. (non Matricaria tzvelevii Pobed.), (M. aserbaidshanica Rauschert). Caucasus.

99. AARONSOHNIA Warb. \& Eig in Bull. agric.

Exp. Stn, Tel-Aviv 6: 39 (1927). Type species: A. factorovskyi Warb. \& Eig.

Annual herbs. Leaves alternate, pinnatisect. Capitula solitary, rather long-pedunculate, radiate, disciform, or discoid. Receptacle conical, epaleate. Ray florets female, fertile, with or without a white limb. Disc corolla 5-lobed; tube basally and especially abaxially much swollen in fruit; lobes with central resin canals. Cypselas slightly dorsiventrally flattened with 1 adaxial and 2 lateral vascular strands and often with 2 lateral resin canals, abaxially covered with myxogenic cells.

Pappus an adaxial, conspicuous, whitish auricle, sometimes absent.

Distribution. Middle East and N. Africa in Morocco, Algeria, Tunisia and Libya. - 2 spp.
During this study it became clear that Chlamydophora pubescens in almost all details agrees with the circumscription of the monotypic genus Aaronsohnia from the Middle East. Thus, we have transferred it to Aaronsohnia. A. pubescens is a sometimes radiate or discoid species from North Africa.

Aaronsohnia is similar to Cotula and other herbaceous members of the Cotula group. However, it is probably more closely related to Matricaria, Leucoptera and Adenoglossa as indicated by the character analysis.
A. factorovskyi Warb. \& Eig
A. pubescens (Desf.) Bremer \& Humphries, comb. nov. Basionym: Cotula pubescens Desf., Fl. atlant. 2: 284 (1799) (Chlamydophora pubescens (Desf.) Cosson \& Durieu, Matricaria pubescens (Desf.) Schultz-Bip., Chamomilla pubescens (Desf.) Alavi).

100. LEUCOPTERA B. Nord. in Bot. Notiser 129: 141 (1976). Type species: L. nodosa (Thunb.) B. Nord.

Shrublets. Leaves alternate or opposite, entire or few-lobed, somewhat fleshy. Capitula solitary, long-pedunculate, radiate. Involucral bracts wide, many-veined. Receptacle convex, epaleate. Ray florets female, fertile; limb white, often becoming pink-reddish. Disc corolla 5-lobed; lobes generally with central resin sacs. Anthers with endothecial tissue mainly polarized. Cypselas dorsiventrally flattened, laterally winged, whitish, with 1 adaxial and 2 lateral vascular strands, generally with 2 lateral resin canals, abaxially covered with elongated apically projected myxogenic cells. Pappus of 1 larger adaxial auricle and 2 smaller adaxial-lateral scales.

Distribution. S. Africa in the Cape. -3 spp .
This distinct, recently described genus of three species is closely related to Adenoglossa. Indeed, they are sister groups as stated by Nordenstam (1976). He also considered Leucoptera monophyletic, despite the fact that it is plesiomorphic in most characters in comparison to Adenoglossa.

Leucoptera and Adenoglossa are similar to the Cotula group in fruit morphology. However, they are possibly more closely related to the northern hemisphere species of Matricaria and Aaronsohnia as indicated by the cladogram (Fig. 12). Their position within the Matricariinae is uncertain.

```
L. nodosa (Thunb.) B. Nord.
L. oppositifolia B. Nord.
L. subcarnosa B. Nord.
```

101. ADENOGLOSSA B. Nord. in Bot. Notiser 129: 137 (1976). Type species: A. decurrens (Hutch.) B. Nord.

An annual herb. Leaves alternate or opposite, entire, fleshy. Capitula solitary, long-pedunculate, radiate. Involucral bracts wide, many-veined. Receptacle conical, epaleate. Ray florets female, fertile; limb short, yellow. Disc corolla 5 -lobed, slightly zygomorphic with 2 smaller adaxial lobes with marginal resin canals extending from the base of the
corolla and with 3 larger abaxial lobes. Anthers with an apical resin sac; endothecial tissue partly polarized. Cypselas dorsiventrally flattened, laterally winged, whitish, with 1 adaxial and 2 lateral vascular strands and with 2 lateral resin canals, abaxially covered with elongated apically projected myxogenic cells. Pappus of 1 larger adaxial auricle, 2 larger adaxial-lateral scales, and 2-3 smaller abaxial scales.

Distribution. S. Africa in the NW Cape. - Monotypic.

Adenoglossa is a recently described monotypic genus with a number of autapomorphies. It is closely related to Leucoptera and their interrelationship is discussed under that genus.
102. HILLIARDIA B. Nord. in Op. bot. Soc. bot. Lund 92: 147 (1987). Type species: H. zuurbergensis (Oliver) B. Nord.

A scrambling shrub. Leaves alternate, flat, pinnatisect. Capitula laxly corymbose, pedunculate, radiate. Receptacle conical to elongated, epaleate. Ray florets female, fertile; limb white, many-veined, apically rather deeply bifid. Disc corolla 4-lobed. Cypselas subglobose, with $2-3$ very thin adaxial ribs; cypsela wall very thin, translucent and showing the brownish black, rounded and very thick-walled testa epidermis cells. Pappus absent.
Distribution. S. Africa in the Cape and Natal. - Monotypic.

Hilliardia was formerly included in Matricaria but it is related neither to the northern hemisphere Matricaria s. s. nor to the South African Matricaria species transferred to various other genera (Myxopappus, Foveolina, Oncosiphon, Cotula). Hilliardia has unusual thin-walled fruits, with an extremely well developed testa (seen in mature fruits only). The shape and venation of the fruits recall Achillea and Cotula. Hilliardia is also similar to Cotula and its South African relatives have a 4-lobed corolla and a chromosome number of $x=10$, hence our placement of Hilliardia within the Cotula group.
103. COTULA L., Sp. pl.: 891 (1753). Type species: C. coronopifolia L. - Brocchia Vis., Cenia Comm. ex Juss., Otochlamys DC., Sphaeroclinium (DC.) Schultz-Bip.

Annual or perennial herbs. Leaves alternate or sometimes opposite or rosulate, pinnatisect, lobed or occasionally entire. Capitula solitary, pedunculate, generally disciform or discoid or rarely shortly radiate; peduncles sometimes inflated below the capitulum. Receptacle flat to conical, epaleate. Ray or outer female florets fertile, in one to several rows, generally stalked; tube short or absent; limb generally absent, white if present. Disc corolla 4-lobed, occasionally 3-lobed, abaxially sometimes saccate; lobes generally with central resin canals, one lobe occasionally expanded to a radiate limb. Cypselas dorsiventrally flattened, often laterally winged, with 2 lateral (occasionally 3 or 4) vascular strands and sometimes with 2 lateral resin canals, generally with blunt uniseriate hairs, sometimes with myxogenic cells. Pappus absent. Flavonol 5-glycosides and dehydrofalcarinone and dehydrofalcarinol present.

Distribution. S. hemisphere, mainly in S. Africa, also in Australia, S. America (C. mexicana), and on the S. oceanic islands (C. goughensis, C. moseleyi), a few species extending
to E. Africa (C. abyssinica, C. cryptocephala), N. Africa (C. cinerea), and to Mexico (C. mexicana); a few widespread weedy species (C. anthemoides, C. australis, C. coronopifolia). -55 spp .

Cotula is generally conceived as disciform or discoid, except for some South African species with rays secondarily evolved from one of the disc floret corolla lobes. But there is also a South African C. montana (Adamson et al., 1944) with true rays. It is clearly a Cotula with its typical fruits and stalked rays. Thus, it appears that Cotula may be radiate as well as disciform or discoid.

The monotypic genus Sphaeroclinium, revived by Mitsuoka \& Ehrendorfer (1972), is included as a synonym of Cotula. The South African species, S. nigellifolium, was originally described as a species of Matricaria, a 'dustbin' genus in South Africa used for various species of unknown relationships. Since the species is radiate its close relationship to the generally disciform species of Cotula is not immediately obvious. Furthermore, the marginal florets, i. e. the rays, are not stalked in Sphaeroclinium as in most species of Cotula. However, there are several species of Cotula with very shortly stalked or sessile rays and there is at least one described radiate species C. montana. Thus, the distinction between Sphaeroclinium and Cotula disappears on closer examination. Both genera have a similar habit, 4-lobed corollas, the same specialized cypsela morphology, a chromosome number of $x=10$, and related chemistry.

Another South African species of 'Matricaria' belonging here is M. andreae E. Phillips. It was described as a Matricaria presumably because it is radiate but the fruit morphology leaves no doubt about its generic position. Thus, it is recombined here as Cotula andreae.

Lloyd (1972a,b) recognized three sections within Cotula: sect. Cotula with usually one row of rays, sect. Strongylosperma with several rows of rays and sect. Leptinella with inflated corollas. Sect. Leptinella is recognized as a distinct genus (Lloyd \& Webb, 1987) but the demarcation between the other two sections is difficult since they can hardly be defined as monophyletic groups. The South African segregate genera Cenia, with inflated peduncles, and Otochlamys, with an abaxially saccate corolla, are included in sect. Cotula. Most species belong to this section, which is mainly South African. Sect. Cotula together with sect. Strongylosperma are clearly in need of revision and the sectional delimitation should be reconsidered.

It is also possible that Cotula is paraphyletic with Leptinella and Soliva excluded. Soliva with several rows of ray florets is possibly derived from sect. Strongylosperma or part of it. In the cladogram Leptinella and Soliva are sister genera, united by their functionally male disc florets, but interrelationships between these two genera and the subunits of Cotula deserve further investigation.

Identification of Cotula species, especially South African, is difficult, since the genus is not revised and since the descriptions are scattered in the literature. In South Africa as a whole only Flora capensis (Harvey, 1865) is available and there are numerous species described later. References are given in the list of species. However, for Natal with its eight species there is a modern treatment by Hilliard (1977).
C. abyssinica Schultz-Bip. E. Africa.
C. alpina (Hook. f.) Hook. f. Australia.
C. andreae (E. Phillips) Bremer \& Humphries, comb. nov.

Basionym: Matricaria andreae E. Phillips in Jl. S. Afr. Bot. 16: 21 (1950). S. Africa.
C. anthemoides L. S. Africa, widespread as a cosmopolitan weed.
C. australis (Sieber ex Sprengel) Hook. f. Australia, widespread as a cosmopolitan weed.
C. barbata DC. S. Africa.
C. bipinnata Thunb. S. Africa, naturalized in Australia.
${ }^{*}$ C. bracteolata E. Meyer ex DC. S. Africa.
C. ceniifolia DC. S. Africa.
C. cinerea Del. (Brocchia cinerea (Del.) Vis.). N. Africa. Note: This species seems aberrant within Cotula. It has been described as the genus Brocchia, which possibly should be re-established. The matter requires further study.
C. coronopifolia L. S. Africa, Australia, widespread as a cosmopolitan weed.
*C. cotuloides (Steetz) Druce. Australia.
C. cryptocephala Schultz-Bip. ex A. Richard. E. Africa.
*C. dielsii Muschler. S. Africa.
C. duckittiae (L. Bolus) Bremer \& Humphries, comb. nov. Basionym: Cenia duckittiae L. Bolus in Ann. Bolus Herb. 4: 15 (1925) (Cenia expansa Compton). S. Africa. - Note: C. expansa is provisionally included here as a synonym. We find it hardly distinct and hesitate to make a new combination unnecessarily.
C. eckloniana (DC.) Levyns (Otochlamys eckloniana DC.). S. Africa.
*C. elongata Vogel. Java.
C. filifolia Thunb. S. Africa.
${ }^{*}$ C. goughensis R. N. R. Brown. Gough Island.
C. heterocarpa DC. S. Africa.
C. hispida (DC.) Harvey. S. Africa.
C. laxa DC. S. Africa.
C. leptalea DC. S. Africa.
C. lineariloba (DC.) Hilliard. S. Africa.
${ }^{*}$ C. loganii Hutch. S. Africa.
*C. macroglossa Bolus ex Schltr. S. Africa.
C. mariae Bremer \& Humphries, nom. nov. Basionym: Cenia pectinata DC., Prodr. 6: 83 (1837) (non Cotula pectinata Hook. f.) - Note: We name this species after Ms. Mari Källersjö in recognition of her contributions to the classification of South African Anthemideae. S. Africa.
C. melaleuca Bolus. S. Africa.
C. membranifolia Hilliard. S. Africa.
C. mexicana (DC.) Cabrera (C. pygmaea Benth. in Benth. \& Hook. f., C. pedicellata (Ruíz Lopez \& Pavon) Cabrera (non Compton), C. cabrerae Caro). S. and C. America, Mexico.
C. microglossa (DC.) O. Hoffm. \& Kunze ex Kunze. (Cenia albovillosa S. Moore, Cenia microglossa DC.) - Note: C. albovillosa is provisionally included as a synonym. We find it hardly distinct and hesitate to make a new combination unnecessarily. S. Africa.
C. montana Compton. S. Africa.
C. moseleyi Hemsley. Tristan d'Acuna.
C. myriophylloides Harvey in Hook. S. Africa.
C. nigellifolia (DC.) Bremer \& Humphries, comb. nov. Basionym: Matricaria nigellifolia DC., Prodr. 6: 50 (1837) (Sphaeroclinium nigellifolium (DC.) Schultz-Bip.). S. Africa.
C. nudicaulis Thunb. S. Africa.
C. paludosa Hilliard. S. Africa.
${ }^{*}$ C. paradoxa Schinz. S. Africa.
${ }^{*}$ C. pedicellata Compton. S. Africa.
C. pedunculata (Schltr) E. Phillips (Otochlamys pedunculata Schltr. S. Africa.
${ }^{*}$ C. pterocarpa DC. S. Africa.
C. pusilla Thunb. S. Africa.
*C. radiata O. Hoffm. ex OK. S. Africa.
C. radicalis (Killick \& Claassen) Hilliard \& Burtt. S. Africa.

* C. rosea Boj. ex Less. Madagascar.
C. sericea L. f. (Cenia sericea (L. f.) DC.). S. Africa.
C. socialis Hilliard. S. Africa.
C. sororia DC. S. Africa.
${ }^{*}$ C. stenophylla K. Koch. S. Africa.
C. tenella E. Meyer ex DC. S. Africa.
C. thunbergii Harvey. S. Africa.
C. turbinata L. (Cenia turbinata (L.) Pers.). S. Africa, naturalized in Australia.
C. villosa DC. (C. multifida DC.). S. Africa.
C. vulgaris Levyns. S. Africa, Australia.
C. zeyheri Fenzl ex Harvey. S. Africa.

104. LEPTINELLA Cass. in Bull. Sci. Soc. philom. Paris 1822: 127 (1822). Type species: L. scariosa (Cass.) Franchet (Lloyd, 1972a).

Perennial or facultative annual herbs, prostrate or rarely suberect. Leaves alternate or opposite, pinnatisect. Capitula solitary, pedunculate, axillary, discoid or disciform, with varying proportions of pistillate and staminate florets or unisexual or both. Receptacle flat or conical, epaleate. Outer, female florets fertile, in one to several rows, tubular, conical to cylindrical, inflated with a hollow space between the outer surface and an inner layer closely surrounding the style. Central florets female-sterile, functionally staminate; corolla 4 -lobed. Cypselas dorsiventrally flattened or more often thick and convex on the dorsal surface at least, glabrous or rarely with tapering uniseriate hairs on the margins. Pappus absent.

Distribution. New Guinea, Australia, New Zealand and its subantarctic islands and one species in South America and the Falkland Islands. - 33 spp .

Until recently resurrected by Lloyd \& Webb (1987), Leptinella has been included in the genus Cotula since being relegated to it as an infrageneric section by Hooker (1864). Lloyd (1972a,b) divided Cotula into three sections: sect. Cotula, sect. Strongylosperma (Less.) Benth. and sect. Leptinella (Cass.) Benth. Although Lloyd \& Webb (1987) consider that it is very likely that the three sections form a monophyletic group we think so only with the addition of the genus Soliva. As described below Soliva is related to sect. Strongylosperma and these two groups together with Cotula and Leptinella are most likely a monophyletic group. Lloyd \& Webb (1987) argue that because Leptinella is defined by the three distinctive autapomorphies it should be recognized as a genus in its own right. All species of Leptinella share the same habit, the same peculiar female floret morphology and all species examined so far have a chromosome number of $\mathrm{x}=13$. Furthermore, the distribution is clearly West Pacific occurring in New Guinea, southeast Australia, New Zealand and the subantarctic islands. For the New Zealand species and the New Guinea species the treatments by Lloyd (1972a) and van Royen \& Lloyd (1975), respectively, are available.
L. albida (D. Lloyd) D. Lloyd \& C. Webb (Cotula sericea (Kirk) Cockayne \& Allan). New Zealand.
*L. altilitoralis (P. Royen \& D. Lloyd) D. Lloyd \& C. Webb. New Guinea.
L. atrata (Hook. f.) D. Lloyd \& C. Webb. New Zealand.
L. calcarea (D. Lloyd) D. Lloyd \& C. Webb. New Zealand.
L. dendyi (Cockayne) D. Lloyd \& C. Webb. New Zealand.
L. dioica Hook. f. New Zealand.
L. dispersa (D. Lloyd) D. Lloyd \& C. Webb. New Zealand.
${ }^{*}$ L. drummondii (Benth.) D. Lloyd \& C. Webb. Australia.
L. featherstonii F. Muell. (Cotula renwickii Cockayne). New Zealand.
*L. filicula (Hook. f.) Hook. f. Australia (Tasmania).
L. filiformis (Hook. f.) D. Lloyd \& C. Webb. New Zealand.
L. goyenii (Petrie) D. Lloyd \& C. Webb. New Zealand.
L. intermedia (D. Lloyd) D. Lloyd \& C. Webb. New Zealand.
L. lanata Hook. f. New Zealand.
L. leptoloba (Mattf.) D. Lloyd \& C. Webb. New Guinea.
L. longipes Hook. f. Australia.
L. maniototo (Petrie) D. Lloyd \& C. Webb. New Zealand.
L. minor Hook. f. (Cotula haastii Kirk). New Zealand
L. nana (D. Lloyd) D. Lloyd \& C. Webb. New Zealand.
L. pectinata (Hook. f.) D. Lloyd \& C. Webb (Cotula monticola Simpson, C. villosa Simpson, C. willcoxii Cheeseman). New Zealand.
L. plumosa Hook. f. New Zealand.
L. potentillina (F. Muell.) Druce. New Zealand.
L. pusilla Hook. f. (Cotula perpusilla Hook. f.). New Zealand.
L. pyrethrifolia (Hook. f.) D. Lloyd \& C. Webb (Cotula linearifolia Cheeseman). New Zealand.
*L. reptans (Benth.) D. Lloyd \& C. Webb. Australia.
L. rotundata (Cheeseman) D. Lloyd \& C. Webb. New Zealand.
*L. sarawaketensis (P. Royen \& D. Lloyd) D. Lloyd \& C. Webb. New Guinea.
L. scariosa (Cass.) Franchet. Southern S. America, Australia.
L. serrulata (D. Lloyd) D. Lloyd \& C. Webb. New Zealand.
L. squalida Hook. f. New Zealand.
L. tenella (Cunn.) D. Lloyd \& C. Webb (Cotula membranacea D. Lloyd). New Zealand.
L. traillii (Kirk) D. Lloyd \& C. Webb. New Zealand.
L. wilhelminensis (P. Royen) D. Lloyd \& C. Webb. New Guinea.
105. SOLIVA Ruíz Lopez \& Pavon, Fl. peruv. prodr.: 113 (1794). Type species: S. sessilis Ruíz Lopez \& Pavon - Gymnostyles Juss.
Annual herbs. Leaves alternate, pinnatisect. Capitula solitary, sessile in the leaf axils, disciform. Receptacle convex or conical, epaleate. Outer florets female, fertile, in several rows; tube and limb absent; style persistent and spinescent in fruit. Central florets functionally male (style-branches fused); corolla 3- or 4-lobed. Cypselas dorsiventrally flattened, with 2 lateral vascular strands, laterally winged; wings sometimes projected to apical teeth, sometimes transversely rugose to sulcate. Pappus absent.
Distribution. Mainly S. America but also in Australia and N. America, two species widespread as weeds (S. sessilis, S. stolonifera). -8 spp.

Soliva with Gymnostyles included is a well-defined monophyletic group characterized by the sessile capitula with female florets in several rows and functionally male central florets, and the persistent and more or less spinescent style. Gymnostyles, with the single species G. stolonifera cannot be retained (e.g. Tutin in Tutin et al., 1976). It differs from Soliva by its villous cypselas with transversely sulcate wings. Similar pubescent cypselas but with less extremely sulcate wings occur in some species of Soliva (S. anthemifolia) (Webb, 1986). The alternative would be to transfer S. anthemifolia and related species to Gymnostyles but it seems quite unnecessary with two small, very similar and closely related genera rather than a single well-defined one. This solution is adopted also by Cabrera (1949) in his revision of the genus.
S. anthemifolia R. Br.
*S. macrocephala Cabrera
*S. mutisii Kunth
*S. neglecta Cabrera
S. sessilis Ruíz Lopez \& Pavon (S. pterosperma (Juss.) Less.)
S. stolonifera (Brot.) R. Br. ex G. Don in Loudon (Gymnostyles stolonifera (Brot.) Tutin)
*S. triniifolia Griseb.
S. valdiviana Philippi
106. SCHISTOSTEPHIUM Less. in Syn. gen.

Compos.: 251 (1832). Type species: S. flabelliforme Less. - Peyrousea DC.
Shrublets or half-shrubs. Leaves alternate, pinnatisect, lobed, dentate or occasionally entire. Capitula corymbose, occasionally solitary, disciform or discoid. Receptacle convex or conical, epaleate. Outer female florets tubular without limb, fertile, generally stalked. Central corolla 4 -lobed. Cypselas dorsiventrally flattened, with 2 lateral (occasionally 3 or 4) vascular strands, sometimes with myxogenic cells. Pappus absent.

Distribution. S. Africa from the E. Cape, Natal, and Transvaal to Mocambique and Zimbabwe. - 12 spp.

Schistostephium is distinguished from the related genus Hippia by its 4 -lobed corolla and perfect disc-florets. It was revised by Hutchinson (1916b). The monotypic Peyrousea, revised by Bremer $(1977,1978)$, is very close to some species within Schistostephium, which appears to be paraphyletic with Peyrousea excluded. Hence we have merged the two genera.
S. crataegifolium (DC.) Fenzl ex Harvey (S. villosum Hutch.)
S. dactyliferum Hutch.
S. flabelliforme Less.
S. griseum (Harvey) Hutch.
S. heptalobum (DC.) Oliver \& Hiern (S. saxicola Hutch.)
S. hippiifolium (DC.) Hutch.
S. mollissimum Hutch.
S. oxylobum S. Moore
*S. rogersii Hutch.
S. rotundifolium (DC.) Fenzl ex Harvey
S. scandens Hutch.
S. umbellatum (L. f.) Bremer \& Humphries, comb. nov. Basionym: Cotula umbellata L. f., Suppl. pl.: 378 (1781) (Peyrousea umbellata (L. f.) Fourc.).

107. HIPPIA L., Mant. pl. 2: 158 (1771). Type species: H. frutescens (L.) L.

Shrublets or half-shrubs. Leaves alternate, pinnatisect, lobed, dentate or occasionally entire. Capitula corymbose, occasionally solitary, disciform. Receptacle convex or conical, epaleate. Outer female florets tubular without limb, fertile; tube much reduced. Central florets functionally male (stylebranches fused); corolla 5 -lobed, sometimes zygomorphic with 2 larger and 3 smaller lobes. Cypselas dorsiventrally flattened, with 2 lateral vascular strands, generally laterally winged. Pappus absent.
Distribution. S. Africa in the Cape. -8 spp.
Hippia is traditionally distinguished by its functionally male central florets. It also differs by its 5 -lobed corolla from the related Cotula and Schistostephium with 4 -lobed corollas. In these two characters Hippia agrees with Eriocephalus but the two genera are otherwise very different. Hippia is generally treated together with Schistostephium, while Eriocephalus is considered isolated. For reasons of parsimony Eriocephalus is placed here as the sister group of Hippia.
Hippia was revised by Hutchinson (1918). H. montana and H. hutchinsonii were later described by Compton (1940) and Merxmüller (Suessenguth and Merxmüller, 1951), respectively.
H. bolusae Hutch.
H. frutescens (L.) L.
H. hirsuta DC.
*H. hutchinsonii Merxm.
H. integrifolia Less.
*H. montana Compton
H. pilosa (P. J. Bergius) Druce
*H. trilobata Hutch.
108. ERIOCEPHALUS L., Sp. pl.: 926 (1753). Type species: E. africanus L.
Shrubs, sometimes spinescent. Leaves alternate, sometimes opposite, often fascicled, variously lobed or entire, mostly ericoid. Capitula corymbose (pseudoumbellate or pseudoracemose) or close together or occasionally solitary, radiate or disciform. Involucral bracts in 2 unequal series; one outer row of pubescent to glabrescent, scarious bracts and one inner row of generally densely villous, often connate bracts. Receptacle paleate; paleae generally villous. Ray or outer female florets fertile; limb white or mauve, short and wide, or absent. Disc florets functionally male (style-branches fused); corolla 5 -lobed, yellow or mauve. Cypselas dorsiventrally flattened, with 2 lateral ribs with vascular strands. Pappus absent. Dehydrofalcarinone and dehydrofalcarinol present.
Distribution. S. Africa mainly in the Cape but also in Namibia. - 26 spp .
Eriocephalus is one of the most distinct and specialized genera in the tribe. The flattened fruits indicate a relationship with Cotula and its South African relatives Hippia and Schistostephium or possibly with Achillea and its relatives. It is here placed with the former group, since it agrees with Cotula in chemistry. Within the Cotula group Eriocephalus is most parsimoniously placed as sister group of Hippia, despite that Eriocephalus seems very different.

The list of species is taken from Harvey (1865) with species
described later added (e.g. Nordenstam, 1964). For species occurring in Namibia Merxmüller (1967) should be consulted. The genus is presently under revision at Windhoek in Namibia.
E. africanus L.
E. aromaticus C. A. Smith
E. aspalathoides DC.
E. capitellatus DC.
E. dinteri S. Moore
E. ericoides (L. f.) Druce (E. glaber Thunb.)
E. eximius DC.
*E. kingesii Merxm. \& Eberle
E. macroglossus B. Nord.
E. microcephalus DC.
*E. pauperrimus Merxm. \& Eberle
E. petrophiloides DC.
E. pinnatus O. Hoffm.
*E. pteronioides DC.
E. pubescens DC.
E. punctulatus DC.
E. racemosus L.
E. scariosissimus S. Moore
E. scariosus DC.
E. septulifer DC.
E. sericeus Gaudich. ex DC.
E. spinescens Burch.
${ }^{*}$ E. tenuipes C. A. Smith
E. tuberculosus DC.
E. umbellulatus Cass.
E. xerophilus Schltr

EXCLUDED GENERA

Potential future transfers, where known, are suggested in parenthesis.

Abrotanella Cass. (Senecioneae - Blennospermatinae Less.)
Baileya A. Gray (Heliantheae; near Psilostrophe DC.)
Centipeda Lour (Astereae)
Ceratogyne Turcz. (Astereae)
Chondropyxis D. Cooke (Gnaphalieae)
Dimorphocoma F. Muell. \& Tate (Astereae)
Elachanthus F. Muell. (Astereae)
Formania W. W. Smith \& Small (Astereae)
Ischnea F. Muell. (Senecioneae - Blennospermatinae Less.)
Isoetopsis Turcz. (Gnaphalieae)
Lepidostephium Oliver (Gnaphalieae - Athrixiinae)
Leucampyx A. Gray (Heliantheae; = Hymenopappus L' Hérit.)
Oedera L. (Gnaphalieae, near Relhania L’ Hérit. emend Anderb. \& Bremer, and Leysera L.)
Plagiocheilus Arn. ex DC. (Astereae; near Lagenophora Cass. \& Solenogyne Cass.).
Pseudocadiscus Lisowski (Senecioneae; =Stenops B. Nord.).

Acknowledgements. This work would not have been possible without the support and assistance from botanical colleagues and fellow synantherologists. We would especially like to thank Dr Bertil Nordenstam and Mr John Cannon for providing working facilities in our respective institutions. We appreciate the assistance and co-operation of the directors of the following institutions for loaning
material or by giving us access to their collections (Abbreviations as in Holmgren et al., 1981): BM, BOL, BRY, E, F, K, GH, LE, M, MO, NBG, NY, PRE, S and US. Very special thanks to Mari Källersjö for solutions to a great variety of taxonomic problems, especially of South African taxa. Many thanks also to Y. R. Ling who gave much assistance on the Artemisiinae tribe during his sabbatical year in the Department of Botany at the Natural History Museum during 1985-86 and to Helen B. Wilcox on the Anthemidineae and Chrysantheminae during her studies at Reading University. We are very grateful to Xi Shuh who provided us with helpful comments, literature, and specimens of Chinese taxa. Jens Klackenburg, at the University of Stockholm, gave much assistance in translating Russian botanical papers for which we are eternally grateful. We are grateful to Sylvia Gould for preparing the original index and for curating all of the collections at BM. Also, many minor errors would have remained undiscovered were it not for the diligent checking of species names and their synonyms by Sylvia Gould. Our thanks to Drs Norman Robson and Charlie Jarvis helping us on matters of nomenclature and botanical Latin. Thanks also to our reviewers Charles Jeffrey, Nicholas Hind and Fritz Ehrendorfer for their extremely helpful comments, although they should in no way be held responsible for the views we outline here. Finally, KB would like to thank the Swedish National Science Research Council for their generous financial support.

REFERENCES

Adamson, R. S., Barker, W. F, \& Compton, R. H. 1944. Plantae novae africanae. Jl. S. Afr. Bot. 10: 123-135.
Alavi, S. 1968. A revision of the European Chrysanthernum, Leucanthemum and Tanacetum complex. Unpublished Ph. D. Thesis, University of Liverpool.
__ 1988. Asteraceae; Anthemideae. In S. M. H. Jafri \& A. El-Gadi (Eds), Flora of Libya 107: 127-185.
__ \& Heywood, V. H. 1976. Plagius. In V. H. Heywood, Flora europaea. Notulae systematicae ad floram europaeam spectantes. Bot. J. Linn. Soc. 71: 273.

Arrigoni, P. V. 1977. Santoline italiche nuove. Webbia 32(1): 129-134.
Baagøe, J. 1977. Taxonomical application of ligule microcharacters in Compositae. 1. Anthemideae, Heliantheae, and Tageteae. Bot. Tidsskr. 71: 193-224.
Baillon, H. 1886. Histoire des plantes 8. Paris.
Beauverd, G. 1915. Contribution á l'étude des Composées. Bull. Soc. bot. genève II, 7: 21-56.
Benedí González, C. 1986. Nota sobre Chamaemelum Miller. Fontqueria 10: 1-4.
-_ 1988a ['1987’]. Revisió taxonòmica del gènere Chamaemelum Miller (Asteraceae) a la Península Ibèrica i les Illes Balears. Collnea. bot. Barcinone 17(1): 55-65.
-1988b. Chamaemelum africae notulae criticae. Candollea 43 (1): 123-127.
Bentham, G. 1873a. The Compositae: Anthemideae. In G. Bentham \& J. D. Hooker, Genera plantarum 2 (1): 416-435. London.
_-1873 . Notes on the classification, history and geographical distribution of the Compositae. J. Linn. Soc. (Bot.) 13: 335-577.
Besser, W. 1829. Synopsis Absinthiorum. Bull. Soc. Nat. Moscou 1: 219-265.
Bessey, C. A. 1915. The phylogenetic taxonomy of flowering plants. Ann. Mo. bot. Gdn 2: 109-164.
Bohlmann, F., Burkhardt, T. \& Zdero, C. 1973. Naturally occurring acetylenes. London.
Boissier, E. 1875. Flora orientalis 3. Genève.
Bolus, H. 1905. Phymaspermum appressum. Trans. S. Afr. phil. Soc. 16: 139. - 1906. Eumorphia davyi. Trans. S. Afr. Phil. Soc. 15: 387.

Bond, P. 1980. A revision of Thaminophyllum Harv. (AsteraceacAnthemideae). Jl. S. Afr. Bot. 46: 157-166.
Borgen, L. 1972. Embryology and achene morphology in endemic Canarian species of Chrysanthemum (L.) Hoffman subg. Argyranthemum (Webb) Harling. Norw. J. Bot. 19: 149-170.

- 1980. A new species of Argyranthemum (Compositac) from the Canary Islands. Norw. J. Bot. 27: 163-165.
Bramwell, D. \& Bramwell, Z. 1974. Wild flowers of the Canary Islands. London.

Bremer, K. 1972. The genus Osmitopsis (Compositae). Bot. Notiser 125: 9-48. - 1976. New taxa of Osmitopsis (Compositae). Bot. Notiser 129: 21-24.
-_ 1977. The genus Peyrousea (Compositae). Bot. Notiser 130(4): 493-497.

- 1978. Proposal (445) to change the type species of Peyrousea DC. nom. cons. (Compositae). Taxon 27 (2/3): 305-306.
- 1983. Taxonomy of Asaemia with notes on Stilpnophyton (CompositaeAnthemideac). Nord. J. Bot. 3: 193-195.

1987. Tribal interrelationships of the of the Asteraceae. Cladistics 3 (3): 212-253.
_ \& Källersjö, M. 1986 ['1985’]. Taxonomic notes on Hymenolepis (Asteraceae-A nthemideae). Nord. J. Bot. 5(6): 517-520.

- Humphries, C. J., Jarvis, C. E. \& Lopéz-González, G. 1987. Proposal to conserve 9341a Prolongoa Boissier with a conserved type (Asteraceae: Anthemideae). Taxon 36: 476-477.
- \& Wijnands, O. 1982. Typification of Athanasia L. (CompositaeAnthemideae). Taxon 31: 544-545.
Briquet, J. 1916. Etudes carpologiques sur les genres de Composées Anthemis, Ormenis et Santolina. Annu. Conserv. Jard. bot. Genève 18-19: 257-313.
_ \& Cavillier, F. 1916. Compositae [part]. In E. Burnat, Flore des Alpes maritimes 6 (1). Genève.
Britton, N. L. \& Brown, A. 1913. An illustrated flora of the Northern United States 3. 2nd ed. New York.
Bruhl, J. J. \& Quinn, C. J. 1990. Cypsela anatomy in the Cotuleae (Asteraceae: Anthemideae). Bot. J. Linn. Soc. 102(1): 37-59.
- - 1991. Floral morphology and a reassessment of affinities in the ‘Cotuleae’ (Asteraceae) Aust. Syst. Bot. 4: 637-54.
Brusse, F. 1989a. A new species of Inezia (Anthemidcae) from the Northeastern Transvaal. Bothalia 19: 27-29.
- 1989b. A new Phymaspermum (Anthemideae) species from dolomite areas of the Wolksberg. Bothalia 19: 29-31.
Cabrera, A. L. 1949. Synopsis dcl genero Soliva (Compositae). Notas Mus. La Plata 14: 123-139.
Candolle, A. P. de. 1837. Prodromus systematis naturalis regni vegetabilis 6. Paris.
Carlquist, S. 1976. Tribal interrelationships and phylogeny of the Asteraceae. Aliso 8: 465-492.
Cassini, M. H. 1816. Anthémidées. In G. Cuvier (Ed.), Dictionnaire des sciences naturelles. 2nd ed., 2nd suppl. Paris.
- 1817. Tableau exprimant les affinités des tribus naturelles de famille des synanthérées. In G. Cuvier (Ed.), Dictionnaire des sciences naturelles 3. 2nd ed. Paris.
- 1826. Opuscules phytologiques 2. Paris.

Compton, R. H. 1931. The flora of the Whitehill district. Trans. R. Soc. S. Afr. 19 (3): 269-326.

- 1940. Hippia montana Compton n. sp. In R. H. Compton \& P. Bond, Plantae novae Africanae Series XIV. Jl. S. Afr. Bot. 6: 55-69.
- 1946. Marasmodes undulata Compton. In R. H. Compton \& T. M. Salter, Plantae novae Africanae Scries XXVI. Jl. S. Afr. Bot. 12: 81-103.
- 1976. Flora of Swaziland. J. S. Afr. Bot. Suppl. 11.

Cronquist, A. 1955. Phylogeny and taxonomy of the Compositae. Am. Midl. Nat. 53: 478-511.

- 1977. The Compositae revisited. Brittonia 29: 137-153.

Davis, P. D. 1975. Flora of Turkey 5. Edinburgh.
Dienst, M. 1983. Leucanthemella serotina (L.) Tzvelev (=Chrysanthemum serotinum L.) Wollmatinger Ried en Bodensee. Göttinger florist. Rundbr. 16 (3-4): 92-95.
Dormer, K. J. 1962. The fibrous layers in the anthers of the Compositae. New Phytol. 61: 150-163.
Drokhina, L. H. 1978. On some life forms of wormwoods of the subgenus Dracunculus Bess. Ryd. and the transition from herbs to subshrubs. Byull. Mosk. Obshch. Ispyt. Prir. 83 (4): 97-108.
Farris, J. S. 1988. Software \& Manual. Hennig86 Reference. Version 1.5. New York.
Favarger, C. 1966. Un critèrc cytochimique contribuant a definir le genrc Leucanthemum (Adans.) em. Briq. et Cav. Revue Cytol. Biol. vég 29: 191-195.
Featherly, H. I. 1954. Taxonomic terminology of higher plants. Ames. Federov, A. (Ed.). 1969. Chromosome numbers of flowering plants. Leningrad. Filatova, N. 1981. Generis Artemisia L.(Asteraceae) subgeneris Seriphidium (Bess.) Peterm. Species novac Kazachstania et Asia media. Nov. Sist. Vysshikh Rast. 18: 222-229.

- 1982a. Generis Artemisia (Asteraceae) subgen. Seriphidium (Bess.) Peterm. species nova. Nov. Sist. Vysshikh Rast. 19: 178-181.
- 1982b. Synopsis specicrum subg. Seriphidium (Bess.) Peterm. e TianSchan. Nov. Sist. Vysshikh. Rast. 19: 164-178.
- 1984. Generis Artemisia (Asteraceae) subgeneris Seriphidium (Bcss.) Peterm. species florae URSS. Nov. Sist. Vysshikh Rast. 21: 155-185.
Ghafoor, A. 1992. Artemesiella, a new genus of Compositae based on Artemisia
stracheyi Hook. f. \& Thoms. cx Clarkc. Candollea 47: 635-643.
Giroux, M. 1933. Note sur la position systćmatiques du Chrysanthemum cinerariifolium (Trev.) Vis., suivie de quelques remarques sur les caractères carpologiqucs des Tanacetum. Bull. Soc. Hist. nat. Afr. N. 24: 54-62.
Goldblatt, P. 1980. Chromosome number in Thaminophyllum (AsteraceacAnthemideae) Jl. S. Afr. Bot. 46: 159-160.
- 1981. Index to plant chromosome numbers 1975-1978. St. Louis.
- 1984. Index to plant chromosome numbers 1979-1981. St. Louis.

Gray, A. 1884. Synoptical flora of North America 1 (2). New York.
Greger, H. 1975. Laubblatt-Flavonoide und Systematik bci Matricaria und Tripleurospermum (Asteraceac-Anthemideae). Pl. Syst. Evol. 124: 35-55.

- 1977. Anthcmideae - chemical review. In V. H. Heywood, J. B. Harborne \& B. L. Turner (Eds), The biology and chemistry of the Compositae 2: 899-941. London.
Grenier, J. C. M. \& Godron, D. A. (1847-) 1848-1856. Flore de France. Paris.
Greuter, W. 1968. Contributio floristica austro-aegaea 13. Candollea 23 (1): 143-150.
Hall, H. \& Clements, F. 1923. The phylogenetic method in taxonomy. The North American species of Artemisia, Chrysothamnus, and Atriplex. Washington.
Harling, G. 1950. Embryological studics in the Compositac (I); AnthemidcaeAnthemidineae. Acta Horti Bergiani 15: 135-168.
- 1951. Embryological studies in the Compositac (II); AnthemideacChrysanthemineae. Acta Horti Bergiani 16: 1-56.
- 1960. Further embryological and taxonomical studies in Anthemis L. and some related genera. Svensk. bot. Tidskr. 54: 572-590.
Harvey, W. H. 1865. Compositae. In W. H. Harvey \& O. W. Sonder, Flora capensis 3: 44-530.
Heywood, V. H. 1954. A revision of the Spanish species of Tanacetum L. subsect. Leucanthemopsis. An. Inst. bot. A. J. Cavanilles 12 (2): 313-377.
- 1976. Leucanthemopsis. In T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters \& D. A. Webb (Eds), Flora europaea 4: 172-173. Cambridge.
__ \& Humphries, C. J. 1977. Anthemideae - systcmatic review. In V. H. Heywood, J. B. Harborne \& B. L. Turner (Eds), The biology and chemistry of the Compositae 2: 851-898. London.
Hilliard, O. M. 1977. Compositae in Natal. Pietermaritzburg.
Hitchcock, A. S. \& Green, M. L. 1929. Standard spccies of Linnean genera of Phanerogamae. In T. A. Sprague (Ed.), International Botanical Congress Cambridge (England), 1930: 111-199 Nomenclature proposals by British botanists. London.
Hochreutiner, B. P. G. 1908. Sertum Madagascariense. Etude systématique de deux collections de plantes récoltées à Madagascar par M. M. J. Guillot et H. Rusivon. Annu. Conserv. Jard. bot. Genève 10-12 (1906-1907): 35-135.
Hoffmann, O. 1894. Compositae. In A. Engler \& K. Prantl, Die natürlichen Pflanzenfamilien 4 (5): 87-391. Berlin.
Holmgren, A. H., Shultz, L. M. \& Lowrey, T. K. 1976. Sphaeromeria, a genus closer to Artemisia than to Tanacetum (Asteraccae: Anthemideae). Brittonia 28: 252-262.
Holmgren, P., Keuken, W. \& Schofield, E. K. 1981. Index herbariorum part 1. The herbaria of the world. 7th ed. Utrecht.
Hooker, J. D. 1864(-67). Handbook of the New Zealand flora. London.
Humphries, C.J. 1976. A revision of the Macaronesian genus, Argyranthemum Webb ex Schultz-Bip. (Compositac-Anthemideae). Bull. Br. Mus. nat. Hist. (Bot.) 5 (4):147-240.
-1977. A new genus of the Compositae from North Africa. Bot. Notiser 130: 155-161.
-1979. A revision of the genus Anacyclus L. (Compositae: Anthemideae). Bull. Br. Mus. nat. Hist. (Bot.) 7 (3): 83-142.
——\& Funk, V. A. 1984. Cladistic methodology. In V. H. Heywood \& D. M. Moore (Eds), Current concepts in plant taxonomy: 323-362. London.
Hutchinson, J. 1916a. Notes on African Compositae: II. Kew Bull. 1916: 171-176.
- 1916b. Notcs on African Compositae: III. Kew Bull. 1916: 241-254.
- 1917. Notes on African Compositae: IV. Kew Bull. 1917: 111-118.
- 1918. Notes on African Compositae: V. Kew Bull. 1918: 178-181.
- 1946. A botanist in southern Africa. London.

Hylander, N. 1945. Nomenklatorische und systematische studien über nordische Gefässpflanzen. Uppsala Univ. Arrskr. 7: 317-319.
Jacquemont, V. 1842-7. Voyages dans l' Inde 4. Descriptions des collections par M. M. Isodore Geoffroy Saint-Hilaire. Paris.

Jarvis, C. E. 1976. A palynological study of the 'Cotuleae' (T. Anthemideae, F. Compositae) and allied genera. Unpublished M. Sc. Thesis, University of Reading.
Jeffrey, C. 1977. Corolla forms in the Compositae - Some evolutionary speculations. In V. H. Heywood, J. B. Harborne \& B. L. Turner (Eds), The biology and chemistry of the Compositae. 1: 111-118. London.
-1979a. Note on the lectotypification of the names Cacalia L., Matricaria
L. and Gnaphalium L. Taxon 28 (4): 349-351

1979b. Compositae. In L. Boulos, A checklist of the Libyan flora. Candollea 34: 307-332.
Källersjö, M. 1986 ['1985']. Fruit strueture and generic delimitation of Athanasia (Asteraccae - Anthcmideae) and related South African genera . Nord. J. Bot. 5(6): 527-542.

- 1988. A gencric rcclassification of Pentzia Thunb. (CompositaeAnthemideae) from South Africa. Bot. J. Linn. Soc. 96 (4): 299-322.
- 1991. The genus Athanasia (Compositae-Anthcmidcae). Op. bot. Soc. bot. Lund. 106: 1-75.
Kay, Q. 1976. Chamomilla and Matricaria. In T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moorc, D. H. Valentine, S. M. Walters \& D. A. Webb (Eds), Flora europaea 4: 165-167. Cambridge.
Kerguélen, M., Bosc, G. \& Lambinon, J. 1987. Données taxonomiques, nomenclaturales et chorologiques pour une révision de la flore de France. Lejeunia 120: 1-264.
Khandzhyan, N. S. 1983. Aehcne anatomy in some species of the genus Achillea (Asteraceae). Bot. Zh. SSSR. 68 (3): 346-351.
Kies, P. 1945. Pentzia viridis Kies. In L. Chippindall, R. H. Compton, R. A. Dyer, M. R. Henderson, P. Kies, F. M. Lcighton, G. J. Lewis \& I. C. Verdorn, Plantae Novae Africanae XXIV. Jl. S. Afr. Bot. 11: 99-126
King, R. M. \& Dawson, H. W. 1975. Cassini on Compositae. 3 vols. New York.
Kitamura, S. 1940. Compositae Japonicae. Mem. Coll. Sci. Kyoto Univ. B,15: 285-446.
-1978. Dendranthemum et Nipponanthemum. Acta phytotax. geobot. Kyoto 29: 165-170.
- 1979. Compositae novae Ncpalenses. Acta phytotax. geobot. Kyoto 30: 127-130.
KneisI, B. 1981. Karpologische untersuchungen an Anthemideae. Universitäts der München.
Knorring, O. 1959. Materies ad studium generis Lepidolopha Winkl. Bot. Mater. Gerb. bot. Inst. V. A. Komarova 19: 380-385.
Komarov, V. L. 1961. Flora URSS 26. Leningrad.
Korobkov, A. A. 1979. New taxa of the genus Artemisia L. (Asteraceae) from the north-east of the USSR. Bot. Zh. SSSR. 64 (5): 669-670.
Kovalevskaja, S. 1972. Taxa nova generis Tanacetopsis Kovalesk. Nov. Sist. Vyssikh Rast. 9: 268-270.
Krasheninnikov, I. M. 1946. An essay of phylogenetical analysis of some Eurasian groups of the genus Artemisia L. according to the palaeogeographic features of Eurasia. Mater. Istor. Flory Rastit. SSSR 11: 87-196.
- 1949. De Brachanthemo DC. Bot. Mater. Gerb. bot. Inst. V. A. Komarova 11: 181-200.
Kynclová, M. 1970. Comparative morphology of achenes of the tribe Anthemideae Cass. (family Asteraceae) and its taxonomic significance. Preslia 42: 33-53.
Leonova, T. G. 1970. Notulae criticae de subgenere Seriphidium (Bess.) Rouy generis Artemisia L. florae partis europaeae URSS. Nov. Sist. Vysshikh Rast. 7: 280-294.
- 1971. New species of wormwood (Artemisia L.) from the flora of Yakutian A.S.S.R. Nov. Sist. Vyssikh Rast. 8: 250-258.
- 1980. De generis Artemisia L. speciebus nonnullis e republiea popularii mongolica. Nov. Sist. Vyssikh Rast. 17: 233-239.
Lessing, C. F. 1832. Synopsis generum Compositarum. Bcrlin.
Ling, Y. R. 1980a. Notes on the genus Neopallasia (Pall.) Poljak. of Compositae. Acta phytotax. sin. 18 (1): 86-88.
- 1980b. Taxa nova generum Artemisiae et Seriphidii xizangensis. Acta phytotax. sin. 18 (4): 504-513.
- 1982. On the system of the gcnus Artemisia L. and the relationship with its allies. Bull. bot. Lab. n.-east For. Inst. 2 (2): 1-60.
- 1984. Materiae novae generis Artemisiae chinensis (1). Bull. bot. Lab. n.-east For. Inst. 4 (2): 14-34.
- 1988a. The Chinese Seriphidium (Bess.) Poljak. Bull. bot. Lab. n.-east For. Inst. 8 (3): 111-123.
- 1988b. The Chinesc Artemisia Linn. The elassification, distribution and application of Artemisiainn. in China. Bull. bot. Lab. n.-east For. Inst. 8 (4): 1-61.
- 1991a. The Old World Seriphidium (Compositae). Bull. bot. Lab. n.-east For. Inst. 11(4): 1-40.
- 1991b. The Old World Artemisia L. (Compositae). Bull. bot. Lab. n.-east For. Inst. 12(1): 1-108.
- \& Ling, Y. R. 1978. Elachanthemum, genus novum familiae compositarum. Acta phytotax. $\sin .16$ (1): 61-65.
- \& Shih, C. 1980. Taxa nova tribus anthemidearum familiae compositarum sinicarum. Bull. bot. Lab. n.-east For. Inst. 6: 1-16.
-——1983. Flora republicae popularis Sinicae 76 (1). Beijing.
Linnaeus, C. 1753. Species plantarum. Stockholm.
- 1757. Genera plantarum. Stockholm.

Lloyd, D. G. 1972a. A revision of New Zealand subantarctic and South

Amcrican specics of Cotula section Leptinella. N. Z. Jl Bot. 10: 277-372.

- 1972b. Brecding systems in Cotula L. (Compositac, Anthemidcae). New Phytol. 71: 1181-1194.
- \& Webb, C. J. 1987. The reinstatement of Leptinella at generie rank and the status of the 'Cotuleac' (Asteraceac; Anthemideac). N. Z. J. Bot. 25: 99-105.
Maire, R. 1929. Pentzia monodiana Maire n. sp. Bull. Soc. Hist. nat. Afr. N. 20: 25-26.
_ 1936. Pentzia hesperidum Maire \& Wilczek. Bull. Soc. Hist. nat. Afr. N. 27: 235.
Marchi, P. 1980 ['1979']. In S. Pignatti, Note critiche sulla Flora d'Italia VI Ultimi appunti miscellani. G. Bot. ital. 113 (5-6): 359-368.
Merxmüller, H. 1954. Compositen - studien IV. Die Compositen - gattungen Südwestafrikas. Mitt. bot. StSamml. Münch. 9-10: 357-443.
- 1957. Compositcn Studien V1. Mitt. Bot. StSamml. Münch. 17-18: 317-338.
- 1967. Asteraceae. Prodromus einer Flora von Sudwestafrika. 20. Lchrc.

Micheli, P. A. 1729. Nova plantarum genera. Firenze.
Mitsuoka, S. \& Ehrendorfer, F. 1972. Cytogenetics and evolution of Matricaria and related genera (Asteraceae-Anthemideae). Ost. bot. Z. 120: 155-200.
Moore, R. J. 1972. Indcx to plant chromosome numbers 1970. Regnum veg. 94. Utrecht.

- 1973. Indcx to plant chromosome numbers 1967-1971. Regnum veg. 90. Utrccht.
- 1977. Index to plant chromosome numbers 1973-1974. Regnum veg. 96. Utrecht.
Moss, E. H. 1940. Intcrxylary cork in Artemisia. Am. J. Bot. 27: 762-768.
Muldashev, A. A. 1982. New taxa of the genus A jania. Bot. Zh., Kyyiv. 67 (11): 1528-1532.
- 1983. A critical review of the genus Ajania (Asteraeeae-Anthemideac). Bot. Zh. SSSR 68(2): 207-214.
Muradyan, L. G. 1970. Delimitation of Tanacetum L. and Xylanthemum Tzvel. based on karpologie-anatomic characters. Biol. Zh. Armenii 23: 89-91.
Napp-Zinn, K. K. \& Eble, M. 1980. Beiträge zur systematischen anatomie der Asteraceae-Anthemideae: die triehome. Pl. Syst. Evol. 136: 169-207.
Nordenstam, B. 1964. A new species of Eriocephalus. Jl. S. Afr. Bot. 30: 49-52.
- 1967. Ncw species of Felicia and Pentzia from the Brandenburg, South West Africa. Bot. Notiser 120: 196-201.
- 1969. Chromosome studies in South African vascular plants. Bot. Notiser 122: 398-408.
- 1976. Re-classification of Chrysanthemum L. in South Africa. Bot. Notiser 129: 137-165.
- 1979. Adenanthellum nom. nov. (Compositac-Anthemidcae). Bot. Notiser 132: 160.
- 1987. Notcs on South African Anthemideac (Compositae). Op. bot. Soc. bot. Lund. 92: 147-151.
Norlindh, T. 1977. Aretoteae - Systematic review. In V. H. Heywood, J. B. Harborne \& B. L. Turner (Eds), The biology and chemistry of the Compositae 2: 943-959. London.
PaImer, J. D., Jansen, R. K., Michaels, H., Chase, M. W. \& Manhart, J. 1988. Phylogenetic analysis of chloroplast DNA variation. Ann. Mo. bot. Gdn 75: 1180-1218.
Patterson, C. 1982. Morphological characters and homology. In K. A. Joysey \& A. E. Friday (Eds), Problems of phylogenetic construction: 21-74. London.
- \& Rosen, D. E. 1977. Review of ichthyodectiform and other Mesozoic fishes and the theory and practice of classifiying fossils. Bull. Am. Mus. nat. Hist. 158: 81-172.
Pavlov, N. V. 1966. Fl. Kazakhst. 9. Kazakskaya.
Phillips, E. P. 1950. Deseriptions and changes of name. Jl. S. Afr. Bot. 16: 15-22.
Pobedimova, E. G. 1961. Matricaria. In B. K. Shishkin \& E. G. Bobrov, Flora URSS. 26: 147-152. Moseow.
Podlech, D., Huber-Morath, A., Iranshahr, M. \& Rechinger, K. H. 1986. Flora Iranica: 158 Compositae 6, Anthemideae, Graz.
Poljakov, P. 1955. Duo genere novae fam. Compositae. Bot. Mater. Gerb. bot. Inst. V. A. Komarova 17: 418-431.
- 1957. De genere novo Hippolytia P. Pol. Bot. Mater. Gerb. bot. Inst. V. A. Komarova 18: 285-290.
- 1959. De generibus Cancrinia Kar. et Kir. et Trichanthemis Rgl. et Schm. Bot. Mater. Gerb. bot. Inst. V. A. Komarova 19: 367-379.
- 1961. Materials and systematics, the genus Artemisia L. Trudy Inst. Bot. Alma-Ata 11: 134-177.
- 1967. Systematics and origin of the Compositae. Nauka (In Russian).

Prassler, M. 1967. Revision der gattung Ursinia. Mitt. bot. StSamml. Münch. 6: 363-478, 531-539.
Rauschert, S. 1974. Nomenklatorische Probleme in den Gattung Matricaria L. Folia geobot. phytotax. 9: 249-260.

Rechinger, K. H. (fil.). 1944. Ergebnisse einer botanischen Reise nach dem Iran, 1937 IV Teil. Annln naturh. Mus. Wien 55: 265-295.

- 1955. Symbolae Afghanicae II. Compositae. Vorgel. Dansk. Videnskab. Selsk. Biol. Skr. 8 (2): 1-216.
- 1968. Notizen zur Orient Flora 104-108. Anz. Akad. Wiss. Wien 105: 241-245.
Reitbrecht, F. 1974. Fruchtanatomie und Systematik der Anthemideae (Asteraceae). Dissertation, Universität Wien.
Robinson, H., \& Brettell, R. D. 1973. Tribal revisions in the Asteraceac. V1I1. A new tribe Ursinieae. Phytologia 26 (2): 76-85.
Rouy, G. C. C. 1903. Flore de France 8. Paris.
Rustan, Ø. H. 1981. Infraspecific variation in Argyranthemum pinnatifidum (Lowe) Lowe. Bocagiana 55: 2-18.
Rydberg, P. A. 1916. (Carduales), Carduaceae, Tageteae, Anthemideae. North American Flora 34 (3). New York.
Savczenko, M. 1949. Methodus anatomo-morphologicus ad explicationem situs systematici generis Brachanthemum applicatus. Bot. Mater. Gerb. bot. Inst. V. A. Komarova 11: 201-207.

Schultz Bipontinus, C. H. 1844a. Ueber die Tanaceteen. Neustadt.
_1844b. Compositac. In P. B. Webb \& S. Berthelot, Histoire naturelle des Iles Canaries 3 (2,2): 203-473.

- 1860. Ueber die Catananchen. Bonplandia 8: 367-369.

Shih, C. 1978. Ajaniopsis Shih, genus novum familiae compositarum sinensium. Acta phytotax sin. 16 (2): 86-89.

- 1979. A taxonomic study of the genus Hippolytia Poljak. Acta phytotax. $\sin .17$ (4): 62-71.
-_ 1985. A new combination of the Compositae - Anthemidcae from China. Acta phytotax. sin. 23 (6): 471-472.
——\& Fu, G.-X. 1979. Species et combinationes novac tribus anthemidearum familiae compositarum tibeticae. Acta phytotax. $\sin .17$ (2): 113-116.
_ 1983. Flora Republicae Popularis Sinicae 76 (1) Angiospermae: Dicotyledoneae, Compositae (3): Anthemideae. Beijing.
Stafleu, F. A. \& Cowan, R. S. 1979. Taxonomic literature 2nd ed. [H-Le]. The Hague.
Stearn, W. T. 1966. Botanical Latin. London.
Stix, E. 1960. Pollenmorphologische Untersuchungen an Compositen. Grana palynol. 2 (2): 39-114.
Suessenguth, K. \& Merxmüller, H. 1951. Species et varietates novae vel rarae in Africa australi et centrali lectae. Mitt. bot. StSamml. Münch. 1: 69-94.
Systematics Association Committee for Descriptive Biological Terminology. 1962. Terminology of simple symmetrical plane shapes. Chart 1a. Taxon 11: 145-156, 245-247.
Taylor, M. R. F. 1940. Pentzia schistostephoides M. R. F. Taylor, sp. nov. (Compositae). Kew Bull. 1940: 60-61.
Tétényi, P. 1986. Chemosyndromes des Anthémidées. Herba hung. 25 (1): 7-43.
Thellung, A. 1923. Compositae. In H. Schinz (Ed.), Beitrage zur Kenntnis der afrikanischen Flora XXXI: 440-456. Vjschr. naturf. Ges. Zürich 63: 420-456.
Toman, J. \& Stary, F. 1965. Matricaria chamomilla oder Matricaria recutita? Taxon 14: 224-228.

Torrey, J. \& Gray, A. 1843. A flora of North America 2. New York.
Tournefort, J. P. de. 1700. Institutiones rei herbariae. 1. Paris.
Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. \& Webb, D. A. (Eds). 1976. Flora europaea 4. Cambridge.
Tzvelev, N. N. 1971. Generis Tanacetopsis (Tzvel.) Kovalensk specics nova Asia Media. Nov. Sist. Vysshikh. Rast. 8: 230-231.

- 1985. Arctanthemum. Nov. Sist. Vyssikh. Rast. 22: 274.
- 1987. Hulteniella integrifolia (Richards) N. N. Tzvelev. Arktich Fl. SSSR. 10: 118.
Valant-Vetschera, K. M. 1981. Vergleichende flavonoidchemie und systematik der gattungen Achillea und Leucocyclus (Asteraceae - Anthemideae). Dissertation der Universität Wien.
- 1982. Flavonoid pattern and systematics of the genus Leucocyclus. Phytochemistry 21: 1067-1069.
- 1985. C-Glycosylflavones as an accumulation tendency: a critical review. Bot. Rev. 51: 1-52.
van Royen, P. \& Lloyd, D. G. 1975. The genus Cotula (Asteraceae) in New Guinea. Blumea 22: 197-206.
Villard, M. 1970. Contribution a l'étude cytotaxonomique et cytogenetique du genre Leucanthemum Adans. em. Briq. \& Cav. Ber. schweiz. bot. Ges. 80: 96-188.
Vogt, R. 1991. Die gattung Leucanthemum Mill. (Compositae-Anthemideae) auf der iberischen halbinsel. Ruizia 10: 1-261.
Vvedensky, A. I. 1962. Flora uzbekistana 6. Tashkent.
Wagenitz, G. 1976. Systematics and phylogeny of the Compositae (Asteraceae). Pl. Syst. Evol. 125: 29-46.
Wang, W. 1979. Three new spccies of Artemisia (Compositae) from North East China. Acta phytotax. sin. 17 (4): 88-89.
Ward, G. H. 1940. Artemisia section Seriphidium in North America. A cytotaxonomic study. Contr. Dudley Herb. 4 (6): 155-205.
Watson, S. 1871. Botany. In C. King (Ed.), United States - Geological Exploration of the fortieth parallel. Washington.
Webb, C. J. 1986. Variation in achene morphology and its implications for taxonomy in Soliva subgenus Soliva (Anthemideae, Asteraceae). N. Z. Jl Bot. 24 (4): 665-669.
Weber, W. A. 1984. New names and combinations principally in the Rocky Mountain flora, 4. Phytologia 55 (1): 1-11.
Wilcox, B. H. 1977. A systematic study of the Leucanthemum-Chrysanthemum complex in North Africa. Unpublished Ph. D. thesis, University of Reading.
Wiley, E. O. 1979. Phylogenetics. The theory and practice of phylogenetic systematics. New York.
Wodehouse, R. P. 1938. Pollen grains: their structure, identification and significance in science and medicine. New York.
Xifreda, C. C. 1985. Sobre el nombre cientifico correcto de la manzanilla (Matricaria recutita L., Asteraceae). Darwiniana 26: 373-375.
Yavin, Z. 1970. A biosystematic study of Anthemis sect. Maruta (Compositae). Israel J. Bot. 19: 137-154.
- 1972. New taxa of Anthemis from the Mediterranean and S.W. Asia. Israel J. Bot. 21: 168-178.

INDEX

Accepted names are in roman, synonyms in italics, new names and principal references in bold.

Aaronsohnia Warb. \& Eig 77, 143, 149, 150, 153, 156, 157
Aaronsohnia factorovskyi Warb. \& Eig 156, 157
Aaronsohnia pubescens (Desf.) Bremer \&

Humphries 157

Abrotanum Duhamel 120
Abrotanella Cass. 76, 161
Absinthium Miller 120
Achillea L. 77, 83, 106, 126, 127, 128, 129, 157, 160
Achillea sect. Santolinoidea DC. 130
Achillea abrotanoides (Vis.) Vis. 128
Achillea absinthoides Hal. 128
Achillea acuminata (Ledeb.) Schultz-Bip. 128 Achillea aegyptiaca L. 128
Achillea ageratifolia (Smith in Sibth. \& Smith) Boiss. 128

Achillea ageratum L. 128
Achillea aleppica DC. 128
Achillea alpina L. 128
Achillea ambrosiaca (Boiss. \& Heldr.) Boiss. 128
Achillea arabica Kotschy 128
Achillea asiatica Serg. 128
Achillea asplenifolia Vent. 128
Achillea atrata L. 128
Achillea aucheri Boiss. 128
Achillea barbeyana Heldr. \& Heimerl in Heimerl 128
Achillea barrelieri (Ten.) Schultz-Bip. 106, 128
Achillea biebersteinii Afan. 128
Achillea biserrata M. Bieb. 128
Achillea boissieri (Hausskn.) Boiss. 128
Achillea brachyphylla Boiss. \& Hausskn. in Boiss. 128

Achillea bucharica Winkler 128
Achillea callichroa Boiss. 129
Achillea camtschatica Rupr. ex Heimerl 129
Achillea cappadocica Hausskn. \& Bornm. 129
Achillea cartilaginea Ledeb. ex Reichenb. 129
Achillea chamaemelifolia Pourret 129
Achillea chrysocoma Friv. 129
Achillea clavennae L. 129
Achillea clypeolata Sibth. \& Smith 129
Achillea coarctata Poiret in Lam. 129
Achillea collina J. Becker ex Reichenb. 129
Achillea compacta Willd. 129
Achillea conferta DC. 129
Achillea cretica L. 129
Achillea crithmifolia Waldst. \& Kit. 129
Achillea cucullata (Hausskn.) Bornm. 129
Achillea cuneatiloba Boiss. \& Buhse 129

Achillea decolorans Schrader 129
Achillea depressa Janka 129
Achillea distans Waldst. \& Kit. ex Willd. 129
Achillea erba-rotta All. 129
Achillea falcata L. 129
Achillea filipendulina Lam. 129
Achillea fraasii Schultz-Bip. 129
Achillea fragrantissima (Forssk.) Schultz-Bip. 129
Achillea gerberi Willd. 129
Achillea glaberrima Klokov 129
Achillea goniocephala Boiss. \& Bal. in Boiss. 129
Achillea grandifolia Friv. 129
Achillea griseo-virens Albov 129
Achillca gypsicola Huber-Mor. 129
Achillea haussknechtii Boiss. 129
Achillea holosericea Sibth. \& Smith 129
Achillea impatiens L. 129
Achillea inundata Kondr. in Wissjul. 129
Achillea japonica Heimerl 129
Achillea kellalensis Boiss. \& Hausskn. in Boiss. 129
Achillea kermanica Gand. 129
Achillea kotschyi Boiss. 129
Achillea lanulosa Nutt. 129
Achillea latiloba Ledeb. ex Nordm. 129
Achillea ledcbourii Heimerl 129
Achillea leptophylla M. Bieb. 129
Achillea ligustica All. 129
Achillea lingulata Waldst. \& Kit. 129
Achillea lucana Pign. 129
Achillea lycaonica Boiss. \& Heldr. in Boiss. 129
Achillea macrocephala Rupr. 129
Achillea macrophylla L. 129
Achillea magnifica Huber-Mor. 129
Achillea maura Humbert 129
Achillea membranacea (Labill.) DC. 129
Achillea micrantha Willd. 128
Achillea micranthoides Klokov 128
Achillea millefolium L. 128, 129
Achillea monocephala Boiss. \& Bal. in Boiss. 129
Achillea multifida (DC.) Boiss. 129
Achillea nana L. 129
Achillea neilrichii A. Kerner 129
Achillea nobilis L. 129
Achillea ochroleuca Ehrh. 129
Achillea odorata L. 129
Achillea oligocephala DC. 129
Achillea oxylepis Boiss. \& Hausskn. in Boiss. 129
Achillea oxyloba (DC.) Schultz-Bip. 106
Achillea oxyodonta Boiss. 129
Achillea pachycephala Rech. f. 129
Achillea pannonica Scheele 129
Achillea phrygia Boiss. \& Bal. in Boiss. 129
Achillea pindicola Hausskn. 129
Achillea pseudoaleppica Huber-Mor. 129
Achillea ptarmica L. 129
Achillea ptarmicifolia (Willd.) Rupr. ex Heimerl 129
Achillea ptarmicoides Maxim. 129
Achillea pyrenaica Sibth. ex Godron in Gren. \& Godron 129
Achillea roseo-alba Ehrend. 129
Achillea sachokiana Sosn. 129
Achillea salicifolia Besser 129
Achillea santolina L. 129
Achillca santolinoides Lagasca 129
Achillea schischkinii Sosn. 129
Achillea schurii Schultz-Bip. 129
Achillea sedelmeyeriana Sosn. 129
Achillea septentrionalis (Serg.) Botsch. 129
Achillea serbica Nyman 129
Achillea setacea Waldst. \& Kit. 129
Achillea sibirica Ledeb. 129
Achillea sieheana Stapf. 129
Achillea sintenisii Huber-Mor. 129
Achillea sipikorensis Hausskn. \& Bornm. 129
Achillea spinulifolia Fenzl ex Boiss. 129
Achillea stricta (Koch) Schleicher ex Gremli 129

Achillea sudetica Opiz 129

Achillea talagonica Boiss. 129
Achillca tanacctifolia All. 129
Achillca taygetea Boiss. \& Heldr. in Boiss. 129
Achillca tenuifolia Lam. 129
Achillca teretifolia Willd. 129
Achillea thracica Velen. 129
Achillea tomentosa L. 129
Achillca umbellata Sibth. \& Smith 129
Achillea vermicularis Trin. 129
Achillea virescens (Fenzl) Hcimerl in A. Kerner 129
Achillea wilhclmsii Koch 129
Achillea wilsoniana Heimerl ex Hand.-Mazz. 129
Achilleinae Bremer \& Humphries 74, 76, 77, 106, 111, 126-128, 131, 137, 149
Adenanthcllum B. Nord. 82, 144, 145, 146
Adenanthellum osmitoides (Harvey) B. Nord. 145, 146
Adenanthemum B. Nord. 146
Adenoglossa B. Nord. 82, 147, 157
Adenoglossa decurrens (Hutch.) B. Nord. 157
Adenosolen DC. 152
Adenosolen tenuifolius DC. 152
Ajania Polj. 77, 81, 106, 110-112, 114, 115, 116
Ajania achilleoides (Turcz.) Polj. ex Grubov 115
Ajania adenantha (Diels) Ling \& Shih 115
Ajania aureoglobosa (W. Smith \& Farrer) Muld. 115
Ajania brachyantha Shih 115
Ajania breviloba (Franchet ex Hand.-Mazz.) Ling
\& Shih 115
Ajania elegantula (W. Smith) Shih 115
Ajania fastigiata (Winkler) Polj. 115
Ajania fruticulosa (Ledeb.) Polj. 115, 116
Ajania gracilis (Hook f. \& Thomson) Polj. ex Tzvelev 115
Ajania grubovii Muld. 115
Ajania junnanica Polj. 115
Ajania khartensis (Dunn) Shih 115
Ajania kokanica (H. Kraschen.) Tzvelev 115
Ajania latifolia Shih 115
Ajania manshurica Polj. 116
Ajania mutellina (Hand.-Mazz.) Muld. 115
Ajania myriantha (Franchet) Ling ex Shih 115
Ajania nana (H. Kraschen.) Muld. 115
Ajania nematoloba (Hand.-Mazz.) Ling \& Shih 115
Ajania nitida Shih 115
Ajania nubigena (Wallich) Shih 115
Ajania oresbia (W. Smith) Muld. 115
Ajania pacifica (Nakai) Bremer \& Humphries 115
Ajania pallasiana (Fischer ex Besser) Polj. 115
Ajania parviflora (Grün.) Ling 115
Ajania potaninii (H. Kraschen.) Polj. 115
Ajania przewalskii Polj. 115
Ajania purpurea Shih 115
Ajania quercifolia (W. Smith) Ling \& Shih 116
Ajania ramosa (Chang) Shih 116
Ajania remotipinna (Hand.-Mazz.) Ling \& Shih

115

Ajania roborowskii Muld. 115
Ajania rupestris (Matsum. ex Koidz.) Muld. 115
Ajania salicifolia (Mattf.) Polj. 116
Ajania scharnhorstii (Regel \& Schmalh.) Tzvelev 115
Ajania sericea Shih 115
Ajania shiwogiku (Kitam.) Bremer \& Humphries 115
Ajania tenuifolia (Jacquem.) Tzvelev 115
Ajania tibetica (Hook. f. \& Thomson) Tzvelev 115
Ajania trilobata Polj. 115
Ajania tripinnatisecta Ling \& Shih 115
Ajania variifolia (Chang) Tzvclev 116
Ajaniopsis Shih 112, 116
Ajaniopsis penicilliformis Shih 116
Allardia Decne 81, 96, 97, 98, 99
Allardia glabra Decne 98

Allardia hucgelii Schultz-Bip. 98
Allardia lasiocarpa (G. X. H. C. Fu) Bremer \& Humphries 98
Allardia nivea Hook. f. \& Thomson ex C. B. Clarke 98
Allardia stoliczkae C. B. Clarke 98
Allardia tomentosa Decne 98
Allardia transalaica (Tzvelev) Bremer \& Humphries 98
Allardia tridactylites (Karelin \& Kir.) Schultz-Bip. 98
Allardia vestita Hook. f. \& Thomson ex C. B. Clarke 98
Ambrosineae 75
Ammanthus Boiss. \& Heldr. ex Boiss. 132
Anacyclus L. 77, 106, 126, 127, 129, 130
Anacyclus clavatus (Desf.) Pers. 130
Anacyclus cyrtolepidiodes Pomel 130
Anacyclus homogamos (Maire) Humphries 130
Anacyclus inconstans Pomel 130
Anacyclus latealatus Huber-Mor. 130
Anacyclus linearilobus Boiss. \& Reuter 130
Anacyclus maroccanus (Ball) Ball 130
Anacyclus monanthos (L.) Thell. 130
Anacyclus nigellifolius Boiss. 130
Anacyclus officinarum Haync 130
Anacyclus pyrethrum (L.) Lagasca 130
Anacyclus radiatus Lois. 130
Anacyclus valentinus L. 129
Anthemidaceae 75
Anthemideae Cass. 73, 75-77, 80-83, 90, 91, 111, 134, 144
Anthemidinae Dumort. emend. Bremer \&
Humphries 74, 76, 77, 83, 131, 132, 137
Anthémidées 75
Anthemis L. 75, 77, 83, 108, 111, 131, 132-134, 137, 139
Anthemis L. sect. Maruta (Cass.) Boiss. 132
Anthemis sect. Sclerorhachis Rech. f. 110
Anthemis subgenus Ammanthus (Boiss. \& Heldr.)
R. Fernandes 75, 134

Anthemis subgenus Anthemis 132
Anthemis aaronsohnii Eig 132
Anthemis abagensis Fed. 132
Anthemis abrotanifolia (Willd.) Guss. 132
Anthemis aciphylla Boiss. 132
Anthemis adonidifolia Boiss. 132
Anthemis aeolica Lojac. 132
Anthemis aetnensis Schouw in Sprengel 132
Anthemis alpestris (Hoffsgg \& Link) R. Fernandes 132
Anthemis altissima L. 132
Anthemis amblyolepis Eig 132
Anthemis ammanthus Greuter 132
Anthemis ammophila Boiss. \& Heldr. in Boiss. 132
Authemis anahytae Woronow ex Sosn. 133
Anthemis anatolica Boiss. 132
Anthemis anthemiformis (Freyn \& Sint.) Grierson 132
Anthemis antilibanotica Eig 132
Anthemis antitaurica Grierson 132
Anthemis arenicola Boiss. 132
Anthemis argyrophylla (Hal. \& Georgiev) Velen. 132
Anthemis armeniaca Freyn \& Sint. 132
Anthemis arvensis L. 132
Anthemis atropatana Iranshar 132
Anthemis auriculata Boiss. 132
Anthemis austriaca Jacq. 132
Anthemis austro-iranica Rech. f., Aellen \&
Esfand. 132
Anthemis behboudiana Rech. f. \& Esfand. 133
Anthemis bornmuelleri Stoy. \& Acht. 132
Anthemis bourgaei Boiss. \& Reuter 132
Anthemis boveana Gay 132
Anthemis brachmannii Boiss. \& Heldr. in Boiss. 132
Anthemis brachycarpa Eig 132

Anthemis brachycentros Gay ex W. Koch 134
Anthemis brachystephana Bornm. \& Gauba 132
Anthemis brevicuspis Bornm. 132
Anthemis breviradiata Eig 132
Anthemis bulgarica N. N. Thin 132
Anthemis bushehrica Iranshahr 132
Anthemis calcarea Sosn. 132
Anthemis candidissima Willd. ex Sprengel 132
Anthemis carpatica Waldst. \& Kit. ex Willd. 132
Anthemis caulescens Aitch. \& Hemsley 110
Anthemis chia L. 132
Anthemis chrysantha Gay 132
Anthemis coelopoda Boiss. 132
Anthemis cornucopiae Boiss. 132
Anthemis corymbulosa Boiss. \& Hausskn. in Boiss. 133
Anthemis cotula L. 132
Anthemis cretacea Zcfirov 133
Anthemis cretica L. 133
Anthemis cuneata Huber-Mor. \& Reese 133
Anthemis cypria Boiss. 133
Anthemis cyrenaica Cosson 133
Anthemis damascena Boiss. \& Gaill. 133
Anthemis davisii Yavin 133
Anthemis debilifolia Eig 133
Anthemis debilis Fed. 134
Anthemis deserti Boiss. 133
Anthemis deserticola H. Kraschen. \& Popov 133
Anthemis deserti-syriaci Eig 133
Anthemis didymaea Mout. 133
Anthemis dipsacea Bornm. 133
Anthemis dubia Steven 133
Anthemis dumetorum Sosn. 134
Anthemis edumea Eig 133
Anthemis eliczrae Eig 133
Anthemis emasensis Eig 133
Anthemis emiliae Sosn. 133
Anthemis euxina Boiss. 134
Anthemis feinbruniae Eig 132
Anthemis filicaulis (Boiss. \& Heldr.) Greuter 133
Anthemis fimbriata Boiss. 133
Anthemis flexicaulis Rech. f. 133
Anthemis freitagii Iranshahr 133
Anthemis fruticulosa M. Bieb. 133
Anthemis fulvida Grierson 133
Anthemis fumariifolia Boiss. 133
Anthemis fumarioides Hochst. 133
Anthemis fungosa Boiss. \& Hausskn. 133
Anthemis fuscata Brot. 130
Anthemis galilaea Eig 132
Anthemis gaudium-solis Velen. 133
Anthemis gayana Boiss. 133
Anthemis gerardiana Jordan 133
Anthemis gilanica Boiss. 133
Anthemis gilletti Iranshahr 133
Anthemis glaberrima (Rech. f.) Greuter 133
Anthemis glareosa Durieu \& Barratte 133
Anthemis gracilis Iranshahr 133
Anthemis grossheimii Sosn. 133
Anthemis halophila Boiss. \& Bal. in Boiss. 133
Anthemis hamrinensis Iranshahr 133
Anthemis handel-mazzettii Eig 133
Anthemis haussknechtii Boiss. \& Reuter in Boiss. 133
Anthemis hebronica Boiss. \& Kotschy 133
Anthemis hemistephana Boiss. 133
Anthemis hermonis Eig 133
Anthemis hinkovae N. N. Thin 133
Anthemis hirtella Winkler 133
Anthemis homalolepis Eig 133
Anthemis hyalina DC. 133
Anthemis hydruntina Groves 133
Anthemis iberica M. Bieb. 133
Anthemis indurata Del. 133
Anthemis ismelia Lojac. 133
Anthemis jailensis Zefirov 133
Anthemis jordanovii Stoy. \& Acht. 133
Anthemis kandaharica Iranshahr 133

Anthemis karabaghensis Mikheev 133
Anthemis khorassanica Rcch. f. 134
Anthemis kitanovii N. N. Thin 133
Anthemis kitenensis N. N. Thin 133
Anthemis kotschyana Boiss. 133
Anthemis krugeriana Pampan. 133
Anthemis kurdica Iranshahr 133
Anthemis kuzmanovii N. N. Thin 133
Anthemis laconica R. Franzen 133
Anthemis leptophylla Eig 133
Anthemis leucanthemifolia Boiss. \& Blanchet 133
Anthemis leucolepis Eig 133
Anthemis linczevskyi Fed. 133
Anthemis lithuanica (DC.) Besser ex Trautv. 133
Anthemis lorestanica Iranshahr 133
Anthemis lyonnetioides (Boiss. \& Kotschy) Boiss. 133
Anthemis macedonica Boiss. \& Orph. in Boiss. 133
Anthemis macrantha Heuffel 133
Anthemis macroglossa Sommier \& Levier 133
Anthemis maris-mortui Eig 133
Anthemis maris-nigri Fed. 133
Anthemis maritima L. 90, 131, 132, 133
Anthemis markhotensis Fed. 133
Anthemis marschalliana Willd. 133
Anthemis mauritiana Maire \& Sennen 133
Anthemis mazandaranica Iranshahr 133
Anthemis melampodina Del. 133
Anthemis melanacme Boiss. \& Hausskn. in Boiss. 133
Anthemis melanolepis Boiss. 133
Anthemis melanoloma Trautv. 133
Anthemis meteorica Hausskn. 133
Anthemis micrantha Boiss. \& Hausskn. 133
Anthemis microcephala (Schrenk) B. Fedtsch. 133
Anthemis microlepis Eig 133
Anthemis microsperma Boiss. \& Kotschy 133
Anthemis mirheydari Iranshahr 133
Anthemis mixta L. 130
Anthemis moghanica Iranshahr 133
Anthemis monantha Willd. 133
Anthemis monilicosta Pomel 133
Anthemis montana L. 133
Anthemis muricata (DC.) Guss. 133
Anthemis nabataea Eig 133
Anthemis nobilis L. 130
Anthemis odontostephana Boiss. 133
Anthemis orbelica Pancic 133
Anthemis orientalis (L.) Degen 133
Anthemis oxylepis (Boiss.) Boiss. 133
Anthemis palestina Reuter in Boiss. 133
Anthemis panachaica Hal. 133
Anthemis parnassica (Boiss. \& Heldr.) R.
Fernandes 133
Anthemis parnesia Boiss. \& Heldr. in Boiss. 133
Anthemis parviceps Dobrocz. \& Fed. 133
Anthemis parvifolia Eig 133
Anthemis patentissima Eig 133
Anthemis pauciloba Boiss. 133
Anthemis pectinata (Bory \& Chaub.) Boiss. \&
Reutcr 133
Anthemis pcdunculata Desf. 133
Anthemis peregrina L. 134
Anthemis perscpolitana Boiss. 133
Anthemis persica Boiss. 133
Anthemis pestalozzae Boiss. 133
Anthemis pindicola Heldr. ex Hal. 133
Anthemis plebeia Boiss. \& Noë 133
Anthemis plutonia Meikle 133
Anthemis praecox Link 130
Anthemis pseudocotula Boiss. 133
Anthemis ptarmiciformis K. Koch 133
Anthemis punctata Vahl 134
Anthemis pungens Yavin 134
Anthemis raschcyana Boiss. 134
Anthemis rayatensis Eig 132
Anthemis regis-borisii Stoy. \& Acht. 134
Anthemis repanda L. 139

Anthemis retusa Del 134
Anthemis rhodensis Boiss. 134
Anthemis rhodocentra Iranshahr 134
Anthemis rigescens Willd. 134
Anthemis rigida (Sibth. \& Smith) Boiss. \& Heldr. 134
Anthemis rosea Smith in Sibth. \& Smith 134
Anthemis rumelica (Velen.) Stoy. \& Acht. 134
Anthemis ruthenica M. Bieb. 134
Anthemis sabulifolia Pomel 134
Anthemis saguramica Sosn. 134
Anthemis samuelssonii Rech. f. 134
Anthemis sancti-johannis Turrill 134
Anthemis saportana Albov 134
Anthemis scaettae Pampan. 134
Anthemis scariosa Banks \& Sol. in Russell 134
Anthemis schischkiniana Fed. 134
Anthemis schizostephana Boiss. \& Hausskn. 134
Anthemis scopulorum Rech. f. 134
Anthemis scrobicularis Yavin 134
Anthemis secundiramea Biv. 134
Anthemis segetalis Ten. 134
Anthemis semiensis Pichi-Serm. 134
Anthemis sibthorpii Griseb. 134
Anthemis sintenisii Freyn 134
Anthemis sosnovskyana Fed. 134
Anthemis spruneri Boiss. \& Heldr. in Boiss. 134
Anthemis sterilis Steven 134
Anthemis stiparum Pomel 134
Anthemis straussii Bornm. 133
Anthemis stribrnyi Velen. 134
Anthemis subtinctoria Dobrocz. 134
Anthemis susiana Náb. 134
Anthemis syriaca Bornm. 133
Anthemis talyschensis Fed. 134
Anthemis taubertii Durieu \& Barratte 134
Anthemis tempskyana Freyn \& Sint. 133
Anthemis tenuicarpa Eig 134
Anthemis tenuiloba (DC.) R. Fernandes 134
Anthemis tenuiflora Gilli 133
Anthemis tigrensis Gay ex A. Richards 132, 134
Anthemis tinctoria L. 132, 134
Anthemis tomentella Greuter 134
Anthemis tomentosa L. 134
Anthemis tranzcheliana Fed. 134
Anthemis tricolor Boiss. 134
Anthemis tricornis Eig 134
Anthemis tripolitana Boiss. \& Blanchet in Boiss. 134
Anthemis triumfettii (L.) DC. in Lam. \& DC. 134
Anthemis trotzkiana Claus ex Bunge 134
Anthemis tuberculata Boiss. 134
Anthemis tubicina Boiss. \& Hausskn. in Boiss. 133 Anthemis virescens Velen. 134
Anthemis wallii Huber-Mor. \& Reese 134
Anthemis werneri Stoy. \& Acht. 134
Anthemis wettsteiniana Hand.-Mazz. 134
Anthemis wiedemanniana Fischer \& C. Meycr 134
Anthemis woronowii Sosn. 134
Anthemis xylopoda O. Schwarz 134
Anthemis yemenensis Podl. 134
Anthemis zcphyrovii Dobrocz, 134
Anthemis zoharyana Eig 134
Anthemis zyghia Woronow 134
Arctanthemum (Tzvelev) Tzvelev 110, 111, 114, 115
Arctanthemum arcticum (L.) Tzvelev 114
Arctanthemum hultenii (A. \& D. Löve) Tzvelev 114
Arctanthemum integrifolium (Richardson) Tzvelev 114
Arctanthemum kurilense (Tzvelev) Tzvelev 114
Arctotideae Cass. 75
Argyranthemum Webb ex Schultz-Bip. 83, 136, 139
Argyranthemum adauctum (Link) Humphrics 136
Argyranthemum broussonetii (Pers.) Humphries 136

Argyranthemum callichrysum (Svent.) Humphries 136
Argyranthemum coronopifolium (Willd.) Humphries 136
Argyranthemum dissectum (Lowe) Lowe 136
Argyranthemum x escarrei (Svent.) Humphries 136
Argyranthemum filifolium (Schultz-Bip.) Humphries 136
Argyranthemum foeniculaceum (Willd.) Webb ex Schultz-Bip. 136
Argyranthemum frutescens (L.) Schultz-Bip. 136
Argyranthemum gracile Schultz-Bip. 136
Argyranthemum haematomma (Lowe) Lowc 136
Argyranthemum haouarytheum Humphrics \& Bramwell 136
Argyranthemum hierrense Humphries 136
Argyranthemum jacobiifolium Kunkel 136
Argyranthemum lemsii Humphries 136
Argyranthemum lidii Humphries 136
Argyranthemum maderense (D. Don) Humphries 136
Argyranthemum pinnatifidum (L. f.) Lowe 136
Argyranthemum sundingii Borgen 136
Argyranthemum sventenii Humphries \& Aldridge 136
Argyranthemum tenerifae Humphries 136
Argyranthemum thalassophilum (Svent.) Humphries 136
Argyranthemum webbii Schultz-Bip. 136
Argyranthemum winteri (Svent.) Humphries 136
Artemisia L. 76, 77, 81, 83, 110-118, 120-125, 126, 127, 147
Artemisia sect. Abrotanum Besser 117, 120, 121
Artemisia sect. Absinthium DC. 120, 121
Artemisia sect. Artemisia 120
Artemisia sect. Dracunculus Besser 81, 113, 116, 120, 121, 125
Artemisia sect. Euartemisia A. Gray 120
Artemisia sect. Seriphidium Besser 117
Artemisia subgenus Artemisia Less. 121
Artemisia subgenus Dracunculus (Besser) Rydb. 121
Artemisia abaensis Y. R. Ling \& S. Y. Zhao 121
Artemisia abrotanum L. 121
Artemisia absinthium L. 121
Artemisia abyssinica Schultz-Bip. 121
Artemisia adamsii Besser 121
Artemisia afghanica Rech. f. 121
Artemisia afra Jacq. 121
Artemisia aksaiensis Y. R. Ling 121
Artemisia alaskana Rydb. 121
Artemisia albicerata H. Kraschen. 121
Artemisia aleutica Hultén 121
Artemisia altaiensis H. Kraschen. 121
Artemisia amygdalina Decne 121
Artemisia andersiana Podl. 121
Artemisia ancthifolia G. Weber in Stechm. 121
Artemisia anethoides Mattf. 121
Artemisia angustissima Nakai 121
Artemisia annua L. 121
Artemisia anomala S. Moore 121
Artemisia aquatica Lour. 121
Artemisia arborescens L. 121
Artemisia arctica Less. 121
Artemisia arctisibirica Korobkov 121
Artemisia argilosa Beetle 118
Artemisia argyi A. Léveillé \& Vaniot. 121
Artemisia argyrophylla Ledeb. 121
Artemisia armeniaca Lam. 121
Artemisia aschurbajewii C. Winkler 121
Artemisia atlantica Cosson \& Durieu 121
Artemisia atrata Lam. 121
Artemisia atrovirens Hand.-Mazz. 121
Artemisia aucheri Boiss. 121
Artemisia aurata V. Komarov 121
Artemisia australis Less. 121
Artemisia austriaca Jacq. 121
Artcmisia austro-himalayensis (Y. R. Ling \& H. S.

Puri) Y. R. Ling \& H. S. Puri 121
Artemisia austro-yunnanensis Ling \& Y. R. Ling 121
Artemisia avarica Minat. 121
Artemisia baimacnsis Y. R. Ling \& Z. C. Z. Y. Zhuo 121
Artemisia banihalensis Kaul \& Bakshi 121
Artemisia bargusinensis Sprengel 121
Artemisia bejdemaniae Leonova 121
Artemisia bicolor Rech. f. \& Wagenitz 118
Artemisia biennis Willd. 121
Artemisia bigelowii A. Gray 118
Artemisia blcpharolepis Bunge 121
Artemisia borealis Pallas 121, 122
Artcmisia borealo-siamensis Y. R. Ling 121
Artemisia brachyloba Franchet 122
Artemisia brachyphylla Kitam. 122
Artemisia brevis Pampan. 122
Artemisia burmanica Pampan. 122
Artemisia caerulescens var. cretacea Fiori 118
Artemisia caespitosa Ledeb. 122
Artemisia californica Less. 120, 122
Artemisia calophylla Pampan. 122
Artemisia campbellii Hook. f. \& Thomson 122
Artemisia campestris L. 121, 122
Artemisia camphorata Villars 122
Artemisia canariensis (Besser) Less. 122
Artemisia cannabifolia A. Léveillé 122
Artemisia cantabrica (Lainz) Lainz 122
Artemisia capillaris Thunb. 122
Artemisia carruthii Wood 122
Artemisia caruifolia Buch.-Ham. in Roxb. 122
Artemisia cashimirica Kaul \& Bakshi 122
Artemisia caucasica Willd. 122
Artemisia chamaemelifolia Villars 122
Artemisia chiajeana Kunze 122
Artemisia chiarugii Pampan. 122
Artemisia chienshanica Ling \& W. W. Wang 122
Artemisia chingii Pampan. 122
Artemisia chitachensis Cosson ex Battand. \& Trabut 122
Artemisia chitralensis Podl. 118
Artemisia chrysolepis Kitagawa 122
Artemisia conaensis Ling \& Y. R. Ling 122
Artemisia congesta Kitam. 122
Artemisia copa Philippi 122
Artemisia coracina W. W. Wang 122
Artemisia crithmifolia L. 122
Artemisia cuspidata H. Kraschen. 122
Artemisia daghestanica H. Kraschen. \& Pors. 122
Artemisia dahurica (Turcz.) Polj. 122
Artemisia dalai-lamae H. Kraschen. 122
Artemisia demissa H. Kraschen. 122
Artemisia densifolia Filat. 122
Artemisia depauperata H. Kraschen. 122
Artemisia desertorum Sprengel 122
Artemisia dimoana Popov 122
Artemisia disjuncta H. Kraschen. 122
Artemisia divaricata (Pampan.) Pampan. 122
Artemisia diversa Diels 122
Artemisia dolichocephala Pampan. 122
Artemisia douglasiana Besser in Hook. f. 122
Artemisia dracunculiformis H. Kraschen. 122
Artemisia dracunculus L. 122
Artemisia dubia Wallich ex Besser 122
Artemisia dudinensis V. P. Amel'chenko 122
Artemisia duthreuil-de-rhinsi H. Kraschen. 122
Artemisia edgeworthii Balakr. 122
Artemisia eldarica Rzazade 122
Artemisia elegantissima Pampan. 122
Artemisia emeiensis (Chang) Y. R. Ling 122
Artemisia eriantha Ten. 122
Artemisia eriocephala Pampan. 122
Artemisia eriopoda Bunge 122
Artemisia erlangshanensis Ling \& Y. R. Ling 122
Artemisia faurieri Nakai 122
Artemisia feddei A. Léveillé \& Vaniot. 123
Artemisia filifolia Torrcy 122

Artemisia filiformilobulata Y. R. Ling \& H. S.
Puri 122
Artemisia flaccida Hand.-Mazz. 122
Artemisia flahaultii Emb. \& Maire 122
Artemisia flava Jurtzev 122
Artemisia flavifolia Gilli 122
Artemisia forrestii W. Smith 122
Artemisia franserioides Greene 122
Artemisia freyniana (Pampan.) H. Kraschen. 122
Artemisia freitagii Podl. 118
Artemisia frigida Willd. 122
Artemisia frigidioides H. C. Fu \& Z. Y. Zhu 122
Artemisia fukudo Makino 122
Artemisia fulgens Pampan. 122
Artemisia furcata M. Bieb. 122
Artemisia gabriellae Braun-Blanquet 122
Artemisia gangsuensis Ling \& Y. R. Ling 122
Artemisia genipi G. Weber in Stechm. 122
Artemisia ghazniensis Podl. 118
Artemisia ghoratensis Podl. 118
Artemisia gilvescens Miq. 122
Artemisia giraldii Pampan. 122
Artemisia glabella Karelin \& Kir. 122
Artemisia glacialis L. 122
Artemisia glauca Pallas ex Willd. 122
Artemisia globosa H. Kraschen. 122
Artemisia globosoides Ling \& Y. R. Ling 122
Artemisia globularia Cham. ex Besser 122
Artemisia glomerata Ledeb. 122
Artemisia gmelinii G. Weber in Stechm. 122
Artemisia gongshanensis Y. R. Ling \& Humphries 122
Artemisia gorgonum Webb in Hook. 122
Artemisia granatensis Boiss. 122
Artemisia graveolens Minat. 122
Artemisia gyangzeensis Ling \& Y. R. Ling 122
Artemisia gyitangensis Ling \& Y. R. Ling 122
Artemisia haichowensis Chang 122
Artemisia hallaisanensis Nakai 122
Artemisia halodendron Turcz. ex Besser 122
Artemisia hancei (Pampan.) Ling \& Y. R. Ling 122
Artemisia haussknechtii Boiss. 122
Artemisia hedinii Ostenf. \& Pauls in Hedin 122
Artemisia henriettae H. Kraschen. 122
Artemisia hillebrandii Skottsb. 122
Artemisia hippolytii Butkov 122
Artemisia hispanica Lam. 122
Artemisia hololeuca M. Bieb. ex Besser 122
Artemisia hulteniana Vorosch. 122
Artemisia hultenii Maksimova 122
Artemisia idilongensis Y. R. Ling 122
Artemisia ifranensis J. Didier 122
Artemisia igniaria Maxim. 122
Artemisia implicata Leonova 122
Artemisia imponens Pampan. 122
Artemisia incana (L.) Druce 122
Artemisia incisa Pampan. 122
Artemisia indica Willd. 123
Artemisia insipida Villars 123
Artemisia insulana H. Kraschen. 123
Artemisia integrifolia L. 123
Artemisia intramongolica H. C. Fu \& Z. Y. Zhu 123
Artemisia jacutica Drob. 123
Artemisia japonica Thunb. 123
Artemisia javanica Pampan. 123
Artemisia jaxatica Polj. 123
Artemisia jilongensis Y. R. Ling \& Humphries 123
Artemisia judaica L. 123
Artemisia kabylica Chabert. 123
Artemisia kanashiroi Kitam. 123
Artemisia kandaharensis Podl. 119
Artemisia kangmasensis Ling \& Y. R. Ling 123
Artemisia karavajevii Leonova 123
Artemisia kauaiensis (Skottsb.) Skottsb. 123
Artemisia kawakamii Hayata 123
Artemisia keiskcana Miq. 123

Artemisia kelleri H. Kraschen. 123
Artemisia kermanensis Podl. 119
Artemisia khorassanica Podl. 119
Artemisia kitadakensis Hara \& Kitam. 123
Artemisia klementzae H. Kraschen. ex Leonova 123
Artemisia klotzschiana Besser 123
Artemisia koidzumii Nakai 123
Artemisia komarovii Polj. 123
Artemisia kulbadica Boiss. \& Buhse 123
Artemisia kumykorum Minat. 123
Artemisia kuschakewiczii Winkler 123
Artemisia laciniatiformis V. Komarov 123
Artemisia lactiflora Wallich ex DC. 123
Artemisia lagocephala (Fischer ex Besser) DC. 123
Artemisia lagopus Fischer ex Besser 123
Artemisia lamprocaulos Rech. f. 123
Artemisia lancea Vaniot 123
Artemisia latifolia Ledeb. 123
Artemisia lavandulifolia DC. 123
Artemisia lavei Kostel. 123
Artemisia ledebouriana Besser 123
Artemisia leontopodioides Fischer ex Besser 123
Artemisia leptophylla D. Don 123
Artemisia leucophylla (Turcz. ex Besser) C. B.
Clarke 123
Artemisia limosa Koidz. 123
Artemisia limprichtii (Pampan.) Ling \& Y. R. Ling 123
Artemisia lipskyi Polj. 123
Artemisia littoricola Kitam. 123
Artemisia longifolia Nutt. 123
Artemisia ludoviciana Nutt. 123
Artemisia macilenta (Maxim.) H. Kraschen. 123
Artemisia maciravae Hutch. \& Dalziel 123
Artemisia macrantha Ledeb. 123
Artemisia macrocephala Jacq. 123
Artemisia macrorhiza Turcz. 123
Artemisia magellanica Schultz-Bip. 123
Artemisia mairei A. Léveillé 123
Artemisia manshurica (V. Komarov) V. Komarov 123
Artemisia maritima L. ssp. kasakorum H.
Kraschen. 119
Artemisia maroccana Cosson 123
Artemisia marschalliana Sprengel 123
Artemisia martjanovii H. Kraschen. ex Polj. 123
Artemisia mattfeldii Pampan. 123
Artemisia mauiensis (A. Gray) Skottsb. 123
Artemisia maximovicziana (F. Schum.) H.
Kraschen. ex Polj. 123
Artemisia medioxima H. Kraschen. ex Polj. 123
Artemisia melanolepis Boiss. \& Kotschy 123
Artemisia mendozana DC. 119
Artemisia mesatlantica Maire 123
Artemisia michauxiana Besser 123
Artemisia minor Jacq. in Besser 123
Artemisia molinieri Quezel, Barbero \& R. Loisel 123
Artemisia molluccana Roxb. 123
Artemisia momiyamae Kitam. 123
Artemisia mongolica (Fischer ex Besser) Nakai 123
Artemisia monophylla Kitam. 123
Artemisia monosperma Del. 123
Artemisia montana Pampan. 123
Artemisia montevidensis Sprengel 123
Artemisia moorcroftiana Wallich ex DC. 123
Artemisia morrisonensis Hayata 123
Artemisia multisecta Leonova 123
Artemisia mutellina Villars 123
Artemisia myriantha Wallich ex DC. 123
Artemisia nakaii Pampan. 123
Artemisia nanshanica H. Kraschen. 123
Artemisia neglecta Leonova 123
Artemisia negrei Ouyahya 123
Artemisia nesiotica Raven 123
Artemisia niitakayamensis Hayata 123
Artemisia nilagirica (C. B. Clarke) Pampan. 123

Artemisia nitida Bertol. 123
Artemisia nivalis Braun-Blanquet 123
Artemisia nortonii Pampan. 123
Artemisia norvegica Fries 123
Artemisia nujianensis (Ling \& Y. R. Ling) Y. R. Ling 123
Artemisia nuristanica Kitam. 122
Artemisia obscura Pampan. 123
Artemisia obtusiloba Ledeb. 123
Artemisia occidentali-sichuanensis Y. R. Ling \& S.
Y. Zhao 123

Artemisia occidentali-sinensis Y. R. Ling 123
Artemisia occidentali-yunnanensis Ling \& Y. R. Ling 123
Artemisia oelandica (Besser) V. Komarov 123
Artemisia olchonensis Leonova 123
Artemisia olgensis (Vorobiev) Vorosch. 123
Artemisia oligocarpa Hayata 123
Artemisia opulenta Pampan. 123
Artemisia oranensis Filat. 123
Artemisia ordosica H. Kraschen. 123
Artemisia orientalis (Pampan.) Ling \& Y. R. Ling 123
Artemisia orientali-hengduangensis Ling \& Y. R. Ling 123
Artemisia orientali-xizangensis Y. R. Ling \& Humphries 123
Artemisia orientali-yunnanensis Y. R. Ling 123
Artemisia orthobotrys Kitagawa 123
Artemisia oxycephala Kitagawa 123
Artemisia packardiae Grimes \& Ertter 123
Artemisia pallens Wallich ex Besser 123
Artemisia palmeri A. Gray 119
Artemisia palustris L. 123
Artemisia pancicii (Janka) Ronniger 123
Artemisia pannosa H. Kraschen. 123
Artemisia papposa Blake \& Cronq. 123
Artemisia parryi A. Gray 124
Artemisia parviflora Buch.-Ham. ex Roxb. 124
Artemisia pattersonii A. Gray 124
Artemisia pedatifida Nutt. 124
Artemisia pedunculosa Miq. 124
Artemisia pengchuoensis Y. R. Ling \& S. Y. Zhao 124
Artemisia persica Boiss. 124
Artemisia pewzowii Winkler 124
Artemisia phaeolepis H. Kraschen. 124
Artemisia phyllobotrys (Hand.-Mazz.) Ling \& Y. R. Ling 124

Artemisia polybotryoidea Y. R. Ling 124
Artemisia pontica L. 124
Artemisia porteri Cronq. 124
Artemisia praticola Klokov 124
Artemisia prattii (Pampan.) Ling \& Y. R. Ling 124
Artemisia princeps Pampan. 124
Artemisia przewalskii H. Kraschen. 124
Artemisia pseudopontica Schur. 124
Artemisia pubescens Ledeb. 124
Artemisia punctigera H. Kraschen. 124
Artemisia pyenorhiza Ledeb. 124
Artemisia quettensis Podl. 119
Artemisia quinlingensis Ling \& Y. R. Ling 124
Artemisia quinqueloba Trautv. 124
Artemisia ramosa C. Smith 124
Artemisia rehan Chiov. 124
Artemisia remotiloba H. Kraschen. ex Polj. 124
Artemisia reptans C. Smith ex Link 124
Artemisia robusta (Pampan.) Ling \& Y. R. Ling 124
Artemisia rosthornii Pampan. 124
Artemisia roxburghiana Besser 124
Artemisia rubripes Nakai 124
Artemisia rupestris L. 124
Artemisia rutifolia Stephen ex Sprengel 124
Artemisia sacrorum Ledeb. 124
Artemisia saitoana Kitam. 124
Artemisia salsoloides Willd. 124
Artemisia samoiedorum Pampan. 124

Artemisia santolinifolia Turcz. ex H. Kraschen. 124
Artemisia saposhnikovii H. Kraschen. ex Polj. 124
Artemisia schimperi Schultz-Bip. ex Schweinf. 124
Artemisia schischkinii H. Kraschen. 124
Artemisia schmidtiana Maxim. 124
Artemisia scoparia Waldst. \& Kit. 124
Artemisia scopulorum A. Gray 124
Artemisia selengensis Turcz. ex Besser 124
Artemisia senjavinensis Besser 124
Artemisia sericea G. Weber in Stechm. 124
Artemisia serrata Nutt. 124
Artemisia serreana Pampan. 124
Artemisia shangnanensis Ling \& Y. R. Ling 124
Artemisia shennongjaensis Ling \& Y. R. Ling 124
Artemisia sichuanensis Ling \& Y. R. Ling 124
Artemisia sieversiana Ehrhart in Willd. 124
Artemisia simulans Pampan. 124
Artemisia sinanensis Yabe 124
Artemisia sinensis (Pampan.) Ling \& Y. R. Ling 124
Artemisia smithii Mattf. 124
Artemisia somai Hayata 124
Artemisia songarica Schrenk. 124
Artemisia speciosa (Pampan.) Ling \& Y. R. Ling 124
Artemisia sphaerocephala H. Kraschen. 124
Artemisia spiciformis var. longiloba Osterh. 119
Artemisia spinescens D. Eaton 125
Artemisia splendens Willd. 124
Artemisia stelleriana Besser 124
Artemisia stenophylla Kitam. 124
Artemisia stipularis Urb. \& Ekman 124
Artemisia stolonifera (Maxim.) V. Komarov 124
Artemisia stracheyi Hook f. \& Thomson ex C. B. Clarke 124
Artemisia stricta Edgew. 124
Artemisia subchrysolepis Filat. 119
Artemisia subulata Nakai 124
Artemisia subviscosa Turcz. 124
Artemisia succulenta Ledeb. 124
Artemisia succulentoides Ling \& Y. R. Ling 124
Artemisia suksdorfii Piper 124
Artemisia superba Pampan. 124
Artemisia swatensis Podl. 124
Artemisia sylvatica Maxim. 124
Artemisia tafelii Mattf. 124
Artemisia taibaishanensis Y. R. Ling \& Humphries 124
Artemisia tainingensis Hand.-Mazz. 124
Artemisia tanacetifolia L. 124
Artemisia tangutica Pampan. 124
Artemisia tecti-mundii Podl. 119
Artemisia tenuifolia Y. R. Ling \& H. S. Puri 124
Artemisia thellungiana Pampan. 124
Artemisia tilesii Ledeb. 124
Artemisia tomentella Trautv. 124
Artemisia tournefortiana Reichenb. 124
Artemisia transbaicalensis Leonova 124
Artemisia trautvetteriana Besser 124
Artemisia tridactyla Hand.-Mazz. 124
Artemisia triniana Besser 124
Artemisia tschernieviana Besser 124
Artemisia tsugitakaensis (Kitam.) Ling \& Y. R. Ling 124
Artemisia tsuneoi Tatewaki \& Kitam. 124
Artemisia tukuchaensis Kitam. 124
Artemisia tyitangensis Ling \& Y. R. Ling 124
Artemisia unalaskensis Rydb. 124
Artemisia ussuriensis Polj. 124
Artemisia velutina Pampan. 124
Artemisia verbenacea (V. Komarov) Kitagawa 124
Artemisia verlotorum Lamotte 124
Artemisia vestita Wallich ex Besser 124
Artemisia vexans Pampan. 124
Artemisia viridisquama Kitam. 124
Artemisia viridissima (V. Komarov) Pampan. 125
Artemisia viscida (Mattf.) Pampan. 125

Artemisia viscidissima Ling \& Y. R. Ling 125
Artemisia vulgaris L. I 10, 120, 125
Artemisia waltonii J. R. Drumm. ex Pampan. 125
Artemisia wellbyi Hemsley \& Pcars 125
Artemisia wudanica Liou \& W. Wang 125
Artemisia xanthochloa H. Kraschen. 125
Artcmisia xerophytica H. Kraschen. 125
Artemisia xigazeensis Ling \& Y. R. Ling 125
Artemisia yadongensis Ling \& Y. R. Ling $\mathbf{1 2 5}$
Artemisia yongii Y. R. Ling 125
Artemisia younghusbandii J. R. Drumm. 125
Artemisia yunnanensis Jeffrey ex Dicls $\mathbf{1 2 5}$
Artemisia zayuensis Ling \& Y. R. Ling 125
Artemisia zhondianensis Y. R. Ling 125
Artemisiastrum Rydb. 117, 118
Artemisiastrum palmeri (A. Gray) Rydb. 118, 119 Artemisiella Ghafoor 120
Artemisiella stracheyi (Hook. f. \& Thompson ex C
B. Clarkc) Ghafoor 124

Artemisiinae Less. emend. Bremer \& Humphries
73, 74, 76, 77, 80-84, 110-113, 116, 117, 127, 132,
$137,138,139,147$
Asaemia (Harvcy) Harvey ex Benth. in Benth. \& Hook. f. 92, 93, 95, 96
Asaemia axillaris (Thunb.) Harvey ex Hoffmann 96
Asaemia minuta (L. f.) Bremcr 96
Asaemia minuta ssp. inermis (E. Phillips) Bremer 96
Asaemia minuta (L. f.) Bremer ssp. minuta 96
Asteraceac 73-75, 77, 81, 83
Astereae 74, 90, 161
Asteroideae 75
Athanasia L. 77, 91-93, 94, 95, 96, 107, 108
Athanasia acerosa (DC.) D. Dietr. 94, 95
Athanasia adenantha (Harvey) Källersjö 95
Athanasia alba Källersjö 95
Athanasia bremcri Källersjö 95
Athanasia brownii Hochr. 108
Athanasia calophylla Källersjö 95
Athanasia calva Hutch. 108
Athanasia capitata (L.) L. 95
Athanasia cochlearifolia Källersjö 95
Athanasia coronopifolia Harvey 108
Athanasia crenata (L.) L. 95
Athanasia crithmifolia (L.) L. 95, 95
Athanasia cuneifolia Lam. 95
Athanasia dentata (L.) L. 95
Athanasia dregeana (DC.) Harvey 108
Athanasia elsiae Källersjö 96
Athanasia filiformis L. f. 96
Athanasia flcxuosa Thunb. 96
Athanasia grandiceps Hilliard \& Burtt 95, 96
Athanasia hirsuta Thunb. 96
Athanasia humilis Källersjö 95, 96
Athanasia imbricata Harvey 96
Athanasia inopinata (Hutch.) Källersjö 96
Athanasia juncea (DC.) D. Dietr. 96
Athanasia Icptocephala Källersjö 96
Athanasia leucoclada (DC.) Harvey 108
Athanasia linifolia L. f. 96
Athanasia microcephala (DC.) D. Dietr. 96
Athanasia microphylla DC. 96
Athanasia minuta (L. f.) Källcrsjö 95, 96
Athanasia montana J. M. Wood \& M. Evans 108
Athanasia ooccphala (DC.) Källersjö 96
Athanasia pachycephala DC. 96
Athanasia pcetinata L. f. 96
Athanasia pinnata L. f. 96
Athanasia pinnatifida (Oliver) Hilliard 94
Athanasia pubescens (L.) L. 96 Athanasia punctata (DC.) Harvey 108
Athanasia quinquedentata Thunb. 96
Athanasia rugulosa E. Mcyer ex DC. 96
Athanasia scabra Thunb. 96
Athanasia schistostephioides Hiern 108
Athanasia schizolepis Harvey 95
Athanasia sertulifera DC. 96

Athanasia spathulata (DC.) D. Dietr. 96
Athanasia thodei Bolus 108
Athanasia tomentosa Thunb. 96
Athanasia tridens Oliver 108
Athanasia trifurcata (L.) L. 96
Athanasia vestita (Thunb.) Drucc 96
Athanasia villosa Hilliard 94
Athanasia virgata Jacq. 96
Athanasia viridis Källersjö 96
Athanasia woodii (Thell.) Hilliard 94
Athrixiinae 161

Baileya A. Gray 161
Balsamita Miller 100, 101
Balsamita major Desf. 102
Blennospermatinae Less. 161
Brachanthemum DC. 110, 113, 114
Brachanthemum sect. Brachanthemum 113
Brachanthemum sect. Dendranthemopsis Tzvelcy 113
Brachanthemum baranovii (H. Kraschen. \& Polj.) H. Kraschen. 113

Brachanthemum fruticulosum (Ledeb.) DC. 113
Brachanthemum gobicum H. Kraschen. 113
Brachanthemum kasakhorum H. Kraschen. 113
Brachanthemum kirghisorum H. Kraschen. 113
Brachanthemum krylovii Scrg. 113
Brachanthemum mongolicum H. Kraschen. 113
Brachanthemum mongolorum Grubov 113
Brachanthemum nanshanicum H. Kraschen. 113
Brachanthemum pulvinatum (Hand.-Mazz.) Shih 113
Brachanthemum titovii H. Kraschen. 113
Brachymeris DC. 94
Brachymeris athanasioides (S. Moore) Hutch. 94
Brachymeris bolusii Hutch. 94
Brachymeris erubescens Hutch. 94
Brachymeris montana Hutch. 94
Brachymeris peglerae Hutch. 94
Brachymeris scoparia DC. 94
Brocchia Vis. 157, 158
Brocchia cinerea (del.) Vis. 158

Calenduleae 74
Cancrinia Karelin \& Kir. 83, 96, 97, 98, 99, 101, 104, 106, 154
Cancrinia sect. Matricarioides Tzvelev 99
Cancrinia sect. Polychrysum Tzvelev 109
Cancrinia sect. Tanacetopsis Tzvelev 104
Cancrinia botschantzevii (Kovalevsk.) Tzvelev 104
Cancrinia discoidea (Ledeb.) Polj. ex Tzvelev 99, 154
Cancrinia chrysocephala Karelin \& Kir. 96, 99
Cancrinia ferganensis (Kovalcvsk.) Tzvelev 104
Cancrinia golovskovii (Polj.) Tzvelev 104
Cancrinia karatavica Tzvelev 104
Cancrinia krasnoborovii V. Khan 99
Cancrinia maximoviczii Winkler 102
Cancrinia mucronata (Regel \& Schmalh.)
Kovalcvsk. 104
Cancrinia nevskii Tzvelev 104
Cancrinia pamiralaica (Kovalevsk.) Kovalevsk. 99
Cancrinia pjataeviae (Kovalevsk.) Tzvelev 104
Cancrinia santoana (H. Kraschen. Popov \& Vved.) Tzvelev 104
Cancrinia setacea (Regel \& Schmalh.) Tzvelev 104
Cancrinia submarginata (Kovalevsk.) Tzvelev 104
Cancrinia subsimilis (Rcch. f.) Tzvelev 104
Cancrinia tianshanica (H. Kraschen.) Tzvelev 99
Cancrinia urgutensis (Popov) Tzvelev 105
Cancriniella Tzvelev 96, 97, 98, 99
Cancriniella krascheninnikovii (Rubtzov) Tzvelev 99
Cancriniinae Bremer \& Humphries 74, 76, 77, 81, 83, 91, 96, 97, 101, 138
Cenia Comm. ex Juss. 157, 158
Cenia albovillosa S. Moore 158
Cenia duckittiae L. Bolus 158

Cenia expansa Compton 158
Cenia microglossa DC. 158
Cenia pectinata DC. 158
Cenia sericea (L.f.) DC. 159
Cenia turbinata (L.) Pcrs. 159
Centipeda Lour 76, 161
Ceratogyne Turcz. 76, 161
Chamaemelum Miller 77, 126, 127, 130, 131
Chamaemelum callosum Boiss. \& Heldr. 156
Chamaemelum daghestanicum Rupr. ex Boiss. 102, 156
Chamaemelum criolepis (Cosson ex Mairc) Benedí 130
Chamacmelum flahaulti (Emb.) Benedí 130
Chamaemelum fuscatum (Brot.) Vasc. 130
Chamaemelum grandiflorum Boiss. \& Hausskn. 156
Chamaemelum heterolepis Freyn \& Sint. 156
Chamaemelum kotschyi Boiss. 156
Chamaemclum mixtum (L.) All. 130
Chamaemelum nobile (L.) All. 130
Chamaemelum repens Freyn \& Sint.
Chamaemelum scariosum (Ball) Benedí 130
Chamartemisia Rydb. 117
Chamartemisia compacta (H. M. Hall) Rydb. 117
Chamomilla Gray 153, 154
Chamomilla aurea (Loef1.) Gay ex Cosson \& Kralik
Chamomilla lasiocarpa (Boiss.) Rauschert 154
Chamomilla macrotis (Rech. f.) Rauschert 154
Chamomilla occidentalis (Grecnc) Rydb. 154
Chamomilla pubescens (Desf.) Alavi 157
Chamomilla suaveolens (Pursh) Rydb. 154
Chamomilla tzvelevii (Pobed.) Rauschert 156
Chamomilla vulgaris Gray 154
Chlamydophora Ehrenb. ex Less. 139, 142, 143
Chlamydophora pubescens (Desf.) Cosson \&
Durieu 143, 157
Chlamydophora tridentata (del.) Ehrenb. ex Less. 142, 143
Chrysanthemeae Less 134
Chondropyxis D. Cooke 161
Chrysantheminae Less. emend. Bremer \& Humphries 73-77, 81, 83, 84, 128, 131
134, 135
Chrysanthemum L. 76, 77, 83, 84, 110, 113, 134, 142, 151
Chrysanthemum afghanicum Gilli 104
Chrysanthemum atlanticum Ball 142
Chrysanthemum carinatum Schousboe 135
Chrysanthemum catananche Ball 142
Chrysanthemum chalchingolicum Grubov 114
Chrysanthemum clausonis (Pomcl) Battand. 143
Chrysanthemum coronarium L. 84, 134, 135
Chrysanthemum crassicollum Rcch. f. 106
Chrysanthemum cuneifolium Kitam. 114
Chrysanthemum deserticola (Murb.) F. Buxbaum 143, 153
Chrysanthemum djilgense Franchet 98
Chrysanthemum dolichophyllum Kitam. 106
Chrysanthemum fortanesii (Boiss. \& Reuter) Quezcl \& Santa 141
Chrysanthemum fuscatum Desf. 153
Chrysanthemum gayanum Ball 142
Chrysanthemum gayanum var. depressum Ball 142
Chrysanthemum kelleri Krylov \& Plotn. 102
Chrysanthemum macrocarpum Cosson \& Kralik ex Battand. in Battand. \& Trab. 154
Chrysanthemum maresii var. hosmariense Ball 142
Chrysanthemuin maroccanuin Battand. 142
Chrysanthemum marschallii Aschers. 101
Chrysanthemum multicaule Desf. 143
Chrysanthemum myconis L. 143
Chrysanthemum nipponicum Franchet ex Maxim. 139
Chrysanthernum nivellei Braun-Blanquet \& Maire 140
Chrysanthemurn pacificum Nakai 115

Chrysanthemum paludosum Poiret 142
Chrysanthemum porphyrostephanum Rech. f. 103
Chrysanthemum richterioides Winkler 103
Chrysanthemum segetum L. 84, 135
Chrysanthemum shiwogiku Kitam. 115
Chrysanthemum tatsienense Bureau \& Franchet 103
Chrysanthemum trifurcatum Dcsf. 143, 153
Chrysanthemum viscidehirtum (Schott) Thell. 135
Chrysanthoglossum Wilcox, Bremer \& Humphries 77, 138, 139, 143
Chrysanthoglossum deserticola (Murb.) Wilcox, Bremer \& Humphries 143
Chrysanthoglossum trifurcatum (Desf.) Wilcox, Bremer \& Humphries 143
Cladanthus Cass. 126, 127, 130, 131
Cladanthus arabicus (L.) Cass. 131
Colcostephus Cass. 77, 136, 137, 139, 143, 144
Coleostephus clausonis Pomel 143
Coleostephus multicaulis (Desf.) Durieu 143
Coleostephus myconis (L.) Reichenb. f. 143
Coleostephus paludosus (Durieu) Alavi 143
Cotula L. 75-77, 81, 83, 101, 127, 147-151, 155, 157-159, 160
Cotula sect. Cotula 158, 159
Cotula sect. Leptinella (Cass.) Hook. f. 158, 159
Cotula sect. Strongylosperma (Less.) Benth. 158, 159
Cotula abyssinica Schultz-Bip. 158
Cotula alpina (Hook. f.) Hook. f. 158
Cotula andreae (E. Phillips) Bremer \& Humphries 158
Cotula anthemoides L. 158
Cotula australis (Sieber ex Sprengel) Hook. f. 158
Cotula barbata DC. 158
Cotula bipinnata Thunb. 158
Cotula bracteolata E. Meyer ex DC. 158
Cotula cabrerae Caro 158
Cotula ceniifolia DC. 158
Cotula cinerea del. 158
Cotula coronopifolia L. 157, 158
Cotula cotuloides (Steetz) Druce 158
Cotula cryptocephala Schultz-Bip. ex A. Richards 158
Cotula dielsii Muschler 158
Cotula duckittiae (L. Bolus) Bremer \& Humphries 158
Cotula eckloniana (DC.) Levyns 158
Cotula elongata C. B. Vogel 158
Cotula filifolia Thunb. 158
Cotula goughensis R. N. R. Brown 157, 158
Cotula haastii Kirk 159
Cotula heterocarpa DC. 158
Cotula hispida (DC.) Harvey 158
Cotula laxa DC. 158
Cotula leptalea DC. 158
Cotula linearifolia Cheeseman 159
Cotula lineariloba (DC.) Hilliard 158
Cotula loganii Hutch. 158
Cotula macroglossa Bolus ex Schltr. 158
Cotula mariae Bremer \& Humphries 158
Cotula melaleuca Bolus 158
Cotula membranacea D. Lloyd 159
Cotula membranifolia Hilliard 158
Cotula mexicana (DC.) Cabrera 157, 158
Cotula microglossa (DC.) O. Hoffm. \& Kunze ex Kunze 158
Cotula montana Compton 158
Cotula monticola Simpson 159
Cotula moseleyi Hemsley 157, 158
Cotula multifida DC. 159
Cotula myriophylloides Harvey in Hook. 158
Cotula nigellifolia (DC.) Bremer \& Humphries 158
Cotula nudicaulis Thunb. 158
Cotula paludosa Hilliard 158
Cotula paradoxa Schinz 158
Cotula pectinata Hook. f. 158
Cotula pedicellata (Ruíz Lopez \& Pavon) Cabrera 158

Cotula pedicellata Compton 158, 159
Cotula pedunculata (Schltr) E. Phillips 159
Cotula perpusilla Hook. f. 159
Cotula pterocarpa DC. 159
Cotula pubescens Desf. 157
Cotula pusilla Thunb. 159
Cotula pygmaea Benth. in Benth. \& Hook. f. 158
Cotula radiata O. Hoffm. ex OK. 159
Cotula radicalis (Killick \& Claassen) Hilliard \& Burtt 159
Cotula renwickii Cockayne 159
Cotula rosea Boj. ex Less. 159
Cotula sericea (Kirk) Cockayne \& Allan 159
Cotula sericea L. f. 159
Cotula socialis Hilliard 159
Cotula sororia DC. 159
Cotula stenophylla K. Koch 159
Cotula tenella E. Meyer ex DC. 159
Cotula thunbergii Harvey 159
Cotula turbinata L. 159
Cotula umbellata L.f. 160
Cotula villosa Simpson 159
Cotula villosa DC. 159
Cotula vulgaris Levyns 159
Cotula willcoxii Cheeseman 159
Cotula zeyheri Fenzl ex Harvey 159
Cotuleae 75, 76, 83,
Crossostephium Less. 111, 113, 117, 120
Crossostephium artemisioides Less. 120
Crossostephium chinense (L.) Makino 120
Cymbopappus B. Nord. 77, 147, 149, 151, 152
Cymbopappus adenosolen (Harvey) B. Nord. 151, 152
Cymbopappus hilliardiae B. Nord. 151
Cymbopappus lasiopodus (Hutch.) B. Nord. 151
Cymbopappus piliferus (Thell.) B. Nord. 151

Daveaua Willk. ex Mariz 147, 149, 153
Davcaua anthemoides Mariz 153
Dendranthema (DC.) Des Moul. 77, 106, 110, 111, 113, 114, 139
Dendranthema sect. Ajania (Polj.) Kitam. 115
Dendranthema sect. Arctanthemum Tzvelev 114
Dendranthema aphrodite (Kitam.) Kitam. 114
Dendranthema arcticum (L.) Tzvelev 114
Dendranthema argyrophyllum (Ling) Ling \& Shih 114
Dendranthema arisanense (Hayata) Ling \& Shih 114
Dendranthema boreale (Makino) Ling ex Kitam. 114
Dendranthema chalchingolicum (Grubov) Bremer \& Humphries 114
Dendranthema chanetii (A. Léveillé) Shih 114
Dendranthema coreanum (A. Léveillé \& Vaniot) Vorosch. 114
Dendranthema crassum (Kitam.) Kitam. 114
Dendranthema cuneifolium (Kitam.) Bremer \& Humphries 114
Dendranthema dichrum Shih 114
Dendranthema erubescens (Stapf) Tzvelev 114
Dendranthema glabriusculum (W. Smith) Shih 114
Dendranthema grandiflorum (Ramat.) Kitam. 114
Dendranthema hultenii (A. \& D. Löve) Tzvelev 114
Dendranthema hypargyrum (Diels) Ling \& Shih 114
Dendranthema indicum (L.) Des Moul. 114
Dendranthema integrifolium (Richardson) Tzvelev 114
Dendranthema japonense (Nakai) Kitam. 114
Dendranthema japonicum (Makino) Kitam. 114
Dendranthema kurilense Tzvelev 114
Dendranthema lavandulifolium (Fischer ex Trautv.) Kitam 114
Dendranthema littorale (Mackawa) Tzvelev 114
Dendranthema maximowiczii (V. Komarov) Tzvelev 114

Dendranthema miyatojimense (Kitam.) Hind 114
Dendranthema mongolicum (Ling) Tzvelcv 114
Dendranthema morifolium (Ramat.) Tzvelev 114
Dendranthema morii (Hayata) Kitam. 114
Dendranthema naktongense (Nakai) Tzvelev 114
Dendranthema nankingense (Hand.-Mazz.) Y. R. Ling 114
Dendranthema okiense (Kitam.) Kitam. 114
Dendranthema oreastrum (Hancc) Ling 114
Dendranthema ornatum (Hcmsley) Kitam. 114
Dendranthema pacificum (Nakai) Kitam. 114, 115
Dendranthema pallasianum (Fischer cx Besser)
Vorosch. 114, 115
Dendranthema parvifolium (Chang) Shih 114
Dendranthema potentilloides (Hand.-Mazz.) Shih 114
Dendranthema rhombifolium Ling \& Shih 114
Dendranthema rupestre (Matsum. ex Koidzumi)
Kitam. 114
Dendranthema shiwogiku (Kitam.) Kitam. 114
Dendranthema sichotense Tzvelev 114
Dendranthema sinchangense (Ueki) Kitam. 114
Dendranthema sinuatum (Ledeb.) Tzvelev 114
Dendranthema vestitum (Hemsley) Ling 114
Dendranthema weyrichii (Maxim.) Tzvelev 114
Dendranthema xeromorphum Khokr. 114
Dendranthema yezoense (T. Mack.) Hind 114
Dendranthema yoshinaganthum (Makino ex
Kitam.) Kitam. 114
Dendranthema zawadskii (Herbich) Tzvelev 113
Dimorphocoma 76, 161
Diotis Desf. 128
Diotis candidissima Dcsf. 128

Elacanthus F. Muell. 76, 161
Elachanthemum Ling \& Y. R. Ling 116
Elachanthemum intricatum (Franchet) Ling \& Y. R. Ling 116

Endopappus Schultz-Bip. 149, 154, 155
Ednopappus macrocarpus Schultz-Bip. 154
Eriocephalus L. 75, 81, 127, 147, 150, 151, 160, 161
Eriocephalus africanus L. 160, 161
Eriocephalus aromaticus C. A. Smith 161
Eriocephalus aspalathoides DC. 161
Eriocephalus capitellatus DC. 161
Eriocephalus dinteri S. Moore 161
Eriocephalus ericoides (L. f.) Druce 161
Eriocephalus eximius DC. 161
Eriocephalus glaber Thunb. 161
Eriocephalus kingesii Merxm. \& Eberle 161
Erioccphalus macroglossus B. Nord. 161
Eriocephalus microcephalus DC. 161
Eriocephalus pauperrimus Merxm. \& Eberle 161
Eriocephalus petrophiloides DC. 161
Eriocephalus pinnatus O. Hoffm. 161
Eriocephalus pteronioides DC. 161
Eriocephalus pubescens DC. 161
Eriocephalus punctulatus DC. 161
Eriocephalus racemosus L. 161
Eriocephalus scariosissimus S. Moore 161
Eriocephalus scariosus DC. 161
Eriocephalus septulifer DC. 161
Eriocephalus sericeus Gaudich. ex DC. 161
Eriocephalus spinescens Burch. 161
Eriocephalus tenuipes C. A. Smith 161
Eriocephalus tuberculosus DC. 161
Eriocephalus umbellulatus Cass. 161
Eriocephalus xerophilus Schltr 161
Euanthemideae 75
Euhélianthées 75
Euartemisia Gren. \& Godron 120
Eumorphia DC. 77, 92, 94, 95
Eumorphia corymbosa E. Phillips 95
Eumorphia davyi Bolus 95
Eumorphia dregeana DC. 94, 95
Eumorphia prostrata Bolus 94, 95
Eumorphia sericea J. M. Wood \& M. Evans 95
Eumorphia swaziensis Compton 95

Eupatorieae 74, 75, 91

Filifolium Kitam. 112, 116
Filifolium sibiricum (L.) Kitam. 116
Formania W. W. Smith 161
Foveolina Källersjö 77, 147, 149, 151, 154, 155, 157
Foveolina albida (DC.) Källersjö 155
Foveolina albidiformis (Thell.) Källersjö 155
Foveolina dichotoma (DC.) Källersjö 155
Foveolina schinziana (Thell.) Källersjö 155
Foveolina tenella (DC.) Källersjö 155

Glossanthis Polj. 97
Glossopappus Kunze 139, 143, 144
Glossopappus chrysanthemoides Kunze 143
Glossopappus macrotus (Durieu) Briq. in Burnat 143
Gnaphalieae 161
Gonosperminae Bremer \& Humphrics 74, 76, 77, 106, 107, 145
Gonospermum Less. 76, 77, 83, 107-108
Gonospermum canariense (DC.) Less. 108
Gonospermum elegans (Cass.) DC. 108
Gonospermum fruticosum (C. Smith ex Link) Less. 106-108
Gonospermum gomerae Bolle 108
Gymnocline Cass. 100
Gymnopentzia Benth. in Benth. \& Hook. f. 92, 95
Gymnopentzia bifurcata Benth. 95
Gymnostyles Juss. 159, 160
Gymnostyles stolonifera (Brot.) Tutin 160

Handelia Heimerl 108, 109, 110

Handelia trichophylla (Schrenk) Heimerl 108, 110
Handeliinae Bremer \& Humphries 74, 76, 77, 108, 109
Helcnieae 81,
Héléniées 75
Heliantheac Cass. 74, 75, 77, 80-82, 90, 91
Hélianthées 75
Hcliocauta Humphries 82, 99, 100, 106
Heliocauta atlantica (Litard \& Maire) Humphrics 106
Hemipappus K. Koch 100, 101
Hemipappus argenteus (Lam.) Tzvelev 101
Hemipappus canus K. Koch 101
Heteranthemis Schott 134, 135, 136
Heteranthemis viscidehirta Schott 135
Heteromera Pomel 147, 149, 153
Heteromera fuscata (Desf.) Pomel 153
Heteromera philaenorum Maire \& Weller 153
Hilliardia B. Nord. 77, 147, 150, 157
Hilliardia zuurbergensis (Oliver) B. Nord. 157
Hippia L. 147, 150, 151, 160
Hippia bolusae Hutch. 160
Hippia frutescens (L.) L. 160
Hippia hirsuta DC. 160
Hippia hutchinsonii Merxm. 160
Hippia integrifolia Less. 160
Hippia montana Compton 160
Hippia pilosa (P. Bergius) Druce 160
Hippia trilobata Hutch. 160
Hippolytia Polj. 100, 105, 106, 145
Hippolytia alashanensis (Ling) Shih 106
Hippolytia crassicollum (Rech. fil.) Bremer \& Humphries 106
Hippolytia darvasica (Winkler) Polj. 105, 106
Hippolytia delavayi (W. Smith) Shih 106
Hippolytia desmantha Shih 106
Hippolytia dolichophylla (Kitam.) Bremer \& Humphries 106
Hippolytia glomerata Shih 106
Hippolytia gossypina (C. B. Clarke) Shih 106
Hippolytia herderi (Regel \& Schmalh.) Polj. 106
Hippolytia kaschgarica (H. Kraschen.) Polj. 106
Hippolytia kennedyi (Dunn) Ling 106
Hippolytia longifolia (Wallich) Shih 106
Hippolytia megacephala (Rupr.) Polj. 106

Hippolytia nana (C. B. Clarke) Shih 106
Hippolytia schugnanica (Winkler) Polj. 106
Hippolytia senecionis (Besser) Polj. 106
Hippolytia syncalathiformis Shih 106
Hippolytia tomentosa (DC.) Tzvelev 106
Hippolytia trifida (Turcz.) Polj. 106
Hippolytia yunnanensis (Jeffrey) Shih 106
Hulteniella Tzvelev 114
Hulteniella integrifolium (Richardson) Tzvelev 114
Hymenolepis Cass. 77, 91, 92, 95
Hymenolepis cynopus Bremer \& Källersjö 95
Hymenolepis dentata (DC.) Källersjö 95
Hymenolcpis gnidioides (S. Moore) Källersjö 95
Hymenolepis incisa DC. 95
Hymenolepis indivisa (Harvey) Källersjö 95
Hymenolepis parviflora (L.) DC. 95
Hymenolepis speciosa (Hutch.) Källersjö 95
Hymenopappus L' Hérit 161
Hymenostemma (Kunze) Willk. 77, 136, 137, 138, 140, 141
Hymenostemma paludosum (Poiret) Pomel 142
Hymenostemma pseudanthemis (Kunze) Willk.
141

Inezia E. Phillips 144, 145, 146
Inezia integrifolia (Klatt) E. Phillips 146
Inezia speciosa Brusse 146
Inulanthera Källersjö $76,77,83,91,107,108,145$
1nulanthera brownii (Hochr.) Källersjö 108
Inulanthera calva (Hutch.) Källersjö 108
Inulanthera coronopifolia (Harvey) Källersjö 108
Inulanthera dregeana (DC.) Källersjö 108
Inulanthera leucoclada (DC.) Källersjö 108
Inulanthera montana (J. M. Wood \& M. Evans)
Källersjö 108
Inulanthera nuda Källersjö 108
Inulanthera schistostephioides (Hiern) Källersjö 108
Inulanthera thodei (Bolus) Källersjö 108
Inulanthera tridens (Oliver) Källersjö 108
Inuleae 75
Ischnea F. Muell. 161
1smelia Cass. 77, 135, 136
Ismelia carinata (Schousboc) Schultz-Bip. 135
Ismelia versicolor Cass. 135
Isoetopsis Turcz. 76, 161
Kaschgaria Polj. 113, 117, 121
Kaschgaria brachanthemoides (Winkler) Polj. 117
Kaschgaria komarovii (H. Kraschen. \& N.
Rubtzov) Polj. 117
Kremeria myconis (L.) Maire 143
Kremeria paludosa Durieu 143

Lagenophora Cass. 161
Lasiospermum Lagasca 75, 83, 91, 92, 94
Lasiospermum bipinnatum (Thunb.) Druce 94
Lasiospermum brachyglossum DC. 94
Lasiospermum erectum (Lam.) Druce 94
Lasiospermum pedunculare Lagasca 94
Lasiospermum poterioides Hutch. 94
Lasiospermum radiatum Trevir. 94
Lepidolopha Winkler 100, 101, 105
Lepidolopha fedtschenkoana Knorr. 105
Lepidolopha filifolia Pavlov 105
Lepidolopha gomolitzkii Kovalevsk. \& Safralieva 105
Lepidolopha karatavica Pavlov 105
Lepidolopha komarovii Winkler 105
Lepidolopha krascheninnikovii Kovalevsk. \& Safralieva 105
Lepidolopha mogoltavica (H. Kraschen.) H. Kraschen. 105
Lepidolopha nuratavica H. Kraschen. 105
Lepidolopha talasica Kovalevsk. \& Safralieva 105
Lepidolopsis Polj. 104, 108, 109
Lepidolopsis turkestanica (Regel \& Schmalh.) Polj. 109

Lepidophorum Necker ex Cass. 77, 136, 137, 139, 145
Lepidophorum repandum (L.) DC. 139
Lepidostephium Oliver 161
Leptinella Cass. 76, 83, 147, 148, 150, 159
Leptinella albida (D. Lloyd) D. Lloyd \& C. Webb 159
Leptinella altilitoralis (P. Royen \& D. Lloyd) D. Lloyd \& C. Webb 159
Leptinella atrata (Hook. f.) D. Lloyd \& C. Webb 159
Leptinella calcarea (D. Lloyd) D. Lloyd \& C. Webb 159
Leptinella dendyi (Cockayne) D. Lloyd \& C. Webb 159
Leptinella dioica Hook. f. 159
Leptinella dispersa (D. Lloyd) D. Lloyd \& C. Webb 159
Leptinella drummondii (Benth.) D. Lloyd \& C. Webb 159
Leptinella featherstonii F. Muell. 159
Leptinella filicula (Hook. f.) Hook. f. 159
Leptinella filiformis (Hook. f.) D. Lloyd \& C. Webb 159
Leptinella goyenii (Petrie) D. Lloyd \& C. Webb 159
Leptinella intermedia (D. Lloyd) D. Lloyd \& C. Webb 159
Leptinella lanata Hook. f. 159
Leptinella leptoloba (Mattf.) D. Lloyd \& C. Webb 159
Leptinella longipes Hook. f. 159
Leptinella maniototo (Petrie) D. Lloyd \& C. Webb 159
Leptinella minor Hook. f. 159
Leptinella nana (D. Lloyd) D. Lloyd \& C. Webb 159
Leptinella pectinata (Hook. f.) D. Lloyd \& C. Webb 159
Leptinella plumosa Hook. f. 159
Leptinella potentillina (F. Muell.) Druce 159
Leptinella pusilla Hook. f. 159
Leptinella pyrethrifolia (Hook. f.) D. Lloyd \& C. Webb 159
Leptinella reptans (Benth.) D. Lloyd \& C. Webb 159
Leptinella rotundata (Cheeseman) D. Lloyd \& C. Webb 159
Leptinella sarawaketensis (P. Royen \& D. Lloyd) D. Lloyd \& C. Webb 159

Leptinella scariosa (Cass.) Franchet 159
Leptinella serrulata (D. Lloyd) D. Lloyd \& C. Webb 159
Leptinella squalida Hook. f. 159
Leptinella tenella (Cunn.) D. Lloyd \& C. Webb 159
Leptinella traillii (Kirk) D. Lloyd \& C. Webb 159
Leptinella wilhelminensis (P. Royen) D. Lloyd \& C. Webb 159

Leucampyx A. Gray 161
Leucanthemella Tzvelev 77, 138, 139, 140
Leucanthemella linearis (Matsum.) Tzvelcv 139, 140
Leucanthemella serotina (L.) Tzvelev 137, 139, 140
Leucantheminae Bremer \& Humphries
74, 77, 81, 82, 83, 111, 128, 131, 136-139, 140, 145, 149
Leucanthemopsis (Giroux) Heyw. 77, 136, 137, 138, 140, 141
Leucanthemopsis alpina (L.) Heyw. 140
Leucanthemopsis flaveola (Hoffsgg \& Link) Heyw. 140
Leucanthemopsis longipectinata (Font Quer) Heyw. 140
Leucanthemopsis minima (Villars) Marchi 140
Leucanthemopsis pallida (Miller) Heyw. 140
Leucanthemopsis pcctinata (L.) Lopéz González \& Jarvis 140

Leucanthemopsis pulverulenta (Lagasca) Heyw. 140
Leucanthemopsis radicans (Cav.) Heyw. 140
Leucanthemopsis tatrae (Vierh.) Holub 140
Leucanthemopsis tomentosa (Lois.) Marchi 140
Leucanthernopsis trifurcata (Desf.) Alavi 140, 143
Leucanthemum Miller 77, 82, 83, 137, 138, 139, 141, 142
Leucanthernum subgen. Chrysanthemopsis Maire 141
Leucanthemum sect. Rhodanthemum 141
Leucanthemum adustum (Koch) Gremli 141
Leucanthemum aligulatum Vogt 141
Leucanthemum arundanum (Boiss.) Cuatrec. 141, 142
Leucanthemum atlanticuin (Ball) Maire 142
Leucanthemum atratum (Jacq.) DC. 141
Leucanthemum briquetii Maire 142
Leucanthemum burnatii Briq. \& Cav. 141
Leucanthemum catalaunicum Vogt 141
Leucanthemun catananche (Ball) Maire 142
Leucanthemum chloroticum A. Kerner \& Murb. 141
Leucanthemum corsicum (Lcss.) DC. 141
Leucanthemum crassifolium (Lange) Willk. in Willk. \& Lange 141
Leucanthemum cuneifolium Le Grand ex Coste 141
Leucanthemum decipiens Pomel 142
Leucanthemum delarbrei Timb.-Lagr. 141
Leucanthemum depressum (Ball) Maire 142
Leucanthemum discoideum (All.) Coste 141, 144
Leucanthemum favargeri Vogt 141
Leucanthemum fontanesii Boiss. \& Reuter 141
Leucanthemum gayanum (Cosson \& Durieu) Maire 142
Leucanthemum gaudinii Dalla Torre 141
Leucanthemum gracilicaule (Duf.) Alavi \& Heyw. 141
Leucanthemum graminifolium (L.) Lam. 141
Leucanthemum heterophyllum (Willd.) DC. 141
Leucanthemum hosmariense (Ball) Font Quer 142 Leucanthemum ircutianum DC. 141
Leucanthemum laciniatum Huter, Porta \& Rigo 141
Leucanthemum lacustre (Brot.) Samp. 141
Leucanthemum leucolepis (Briq. \& Cav.) Horvatić 141
Leucanthemum maestracense Vogt \& Hellwig 141 Leucanthemum mairei Humbert 142
Leucanthemum maresii (Cosson) Maire 142
Leucanthemum maroccanum (Battand.) Maire 142 Leucanthemum maximum (Ram.) DC. 141 Leucanthemum meridionale Le Grand 141 Leucanthemum merinoi Vogt \& Castroviejo 141
Leucanthemum mesatlanticum Emb. \& Maire 142 Leucanthemum monspeliense (L.) Coste 141 Leucanthemum montserratianum Vogt 141 Leucanthemum pallens (Gay) DC. 141
Leucanthemum paludosum (Poiret) Bonnet \& Barratte 141, 142
Leucanthemum praecox (Horvatić) Horvatić 141
Leucanthemum pluriflorum Paul. 141
Leucanthemum pseudo-catananche Maire 142
Leucanthemum reboudianum Pomcl 142
Leucanthemum redieri Maire 142
Leucanthemum setabense DC. 142
Leucanthemum subglaucum De Laramb. 141
Leucanthemum sylvaticum (Hoffsgg \& Link)
Nyman 141
Leucanthemum vulgare Lam. 136, 141
Leucanthemum waldensteinii (Schultz-Bip.) Pouzar 141
Leucocyclus Boiss. 77, 126, 127, 130
Leucocyclus formosus Boiss. 130
Leucoglossum Wilcox, Bremer \& Humphries 77, $139,140,141,142,143$

Leucoglossum decipiens (Pomcl) Wilcox, Bremer \& Humphries 142
Leucoglossum paludosum (Poiret) Wilcox, Bremer \& Humphries 141, 142
Leucoglossum reboudianum (Pomel) Wilcox,
Bremer \& Humphries 142
Leucoptera B. Nord. 147, 150, 157
Leucoptcra nodosa (Thunb.) B. Nord. 157
Leucoptera oppositifolia B. Nord. 157
Leucoptera subcarnosa B. Nord. 157
Leysera L. 161
Lidbeckia P. Bergius 144, 145, 146
Lidbeckia lobata Thunb. 146
Lidbeckia pectinata P. Bergius 145, 146
Lidbeckia quinqueloba (L. f.) Cass. 146
Lidbeckieae 75
Lonas Adans. 149, 153, 154
Lonas annua (L.) Vines \& Druce 154
Lugoa DC. 76, 83, 107
Lugoa revoluta (C. Smith ex Link) DC. 107

Marasmodes DC. 147, 149, 151, 152
Marasmodes adenosolen Harvey 152
Marasmodes dummeri Bolus ex Hutch. 152
Marasmodes oligocephalus DC. 152
Marasmodes polycephalus DC. 152
Marasmodes undulata Compton 152
Matricaria L. 75, 77, 83, 146, 147-149, 153, 154, 155, 156, 158
Matricaria andreae E. Phillips 158
Matricaria armeniaca Rauschert 156
Matricaria aserbaidshanica Rauschert 156
Matricaria aurea (Loefl.) Schultz-Bip. 154
Matricaria auriculata (Boiss.) Ball 156
Matricaria australis (Pobed.) Rauschert 156
Matricaria breviradiata (Ledeb.) Rauschert 156
Matricaria capensis L. 153
Matricaria caucasica (Willd.) Poiret 156
Matricaria chamomilla L. 153
Matricaria chamomilla auct. non L. 154
Matricaria colchica (Manden.) Rauschert 156
Matricaria conoclinia (Boiss. \& Balansa) Nyman 156
Matricaria corymbosa Desr. in Lam. 156
Matricaria daghestanica (Rupr. ex Boiss.) Rauschert 156
Matricaria decipiens (Fischer \& C. Meycr) K. Koch 156
Matricaria disciformis (C. Meyer) DC. 156
Matricaria discoidea DC. 154
Matricaria elongata (Fischer \& C. Meyer ex DC.) Hand.-Mazz. 156
Matricaria froedinii (Rech. f.) Rauschert 156
Matricaria globifera (Thunb.) Fenzl ex Harvey 153
Matricaria grossheimii (Fed.) Rauschert 156
Matricaria halepensis Rauschert 156
Matricaria hirta (Thunb.) DC. 153
Matricaria hygrophila (Bornm.) Rauschert 156
Matricaria inodora L. 153, 154, 156
Matricaria karjaginii (Manden \& Sof.) Rauschert 156
Matricaria lasiocarpa Boiss. 154
Matricaria ledebourii (Schultz-Bip.) Schischk. 154
Matricaria lesbiaca (Candargy) Rauschert 156
Matricaria limosa (Maxim.) Kudo 156
Matricaria macrotis Rech. f. 154
Matricaria maritima L. 156
Matricaria matricarioides Porter ex Britton 154
Matricaria microcephala K. Koch 156
Matricaria monticola (Boiss. \& Huet) Rauschert 156
Matricaria multiflora Fenzl ex Harvey 153
Matricaria nigellifolia DC. 158
Matricaria occidentalis (Greene) Rauschert 154
Matricaria oreades Boiss. 156
Matricaria parviflora (Willd.) Poiret 156
Matricaria perforata Mérat 154, 156
Matricaria pichleri (Boiss.) Rauschert 156

Matricaria pubescens (Dcsf.) Schultz-Bip. 157
Matricaria rccutita L. 146, 153, 154
Matricaria rosella (Boiss. \& Orph.) Nyman 156
Matricaria rupestris (Sommier \& Levier) Rauschert 156
Matricaria sevanesis (Manden.) Rauschert 156
Matricaria songarica Bunge 154
Matricaria subnivalis (Pobed.) Rauschert 156
Matricaria szowitzii (DC.) Rauschert 156
Matricaria tchihatchewii (Boiss.) Voss 156
Matricaria tempskyana (Freyn \& Sint.) Rauschert 156
Matricaria tetragonosperma (Schum.) Hara \&
Kitam. 156
Matricaria transcaucasica (Manden.) Rauschert 156
Matricaria trichophylla (Boiss.) Boiss. 156
Matricaria tzvelevii Pobed. 154, 156
Matricariinae Bremer \& Humphries
74, 75-77, 83, 84, 127, 128, 145, 146-151, 155
Mausolea Polj. 82, 111, 121, 125
Mausolea eriocarpa (Bunge) Polj. 125
Mccomischus Cosson ex Benth. in Benth. \& Hook.
f. 77, 126, 127, 130

Mecomischus geslini (Cosson) Cosson 130
Mecomischus halimifolius (Munby) Hochr. 130
Mecomischus pedunculatus (Cosson \& Durieu)
Maire 130
Microcephala Pobed. 77, 147, 149, 154
Microccphala afghanica Podl. 154
Microcephala deserticola PodI. 154
Microcephala lamellata (Bunge) Pobed. 154
Microcephala lasiocarpa (Boiss.) Pobed. 154
Microcephala subglobosa (H. Kraschen.) Pobed. 154
Microcephala turcomanica (Winkler) Pobed. 154
Myxopappus Källersjö 77, 90, 147, 149, 151, 155, 157
Myxopappus acutilobus (DC.) Källersjö 155
Myxopappus hereroensis (O. Hoffm.) Källersjö 155

Nananthea DC. 76, 77, 131, 132, 134
Nananthea perpusilla (Lois.) DC. 134
Nassauvineae 75
Neopallasia Polj. 81, 121, 125
Neopallasia pectinata (Pallas) Polj. 125
Neopallasia tibetica Y. R. Ling 125
Neopallasia yunnanensis (Pampan.) Y. R. Ling 125
Nipponanthemum Kitam. 77, 137, 139
Nipponanthemum nipponicum (Franchet ex Maxim.) Kitam. 139
Nivellea Wilcox, Bremer \& Humphries 77, 137, 138, 140
Nivellea nivellei (Braun-Blanquet \& Maire) Wilcox, Bremer \& Humphries 140

Oedera L. 161
Oligosporus Cass. 120, 121
Oncosiphon Källersjö 77, 82, 147-151, 152, 153, 157
Oncosiphon africanum (P. Bergius) Källcrsjö 153
Oncosiphon glabratum (Thunb.) Källersjö 153
Oncosiphon grandiflorum (Thunb.) Källersjö 153
Oncosiphon intermedium (Hutch.) Källersjö 153
Oncosiphon piluliferum (L. f.) Källersjö 152, 153
Oncosiphon sabulosum (Wolley-Dod) Källersjö 153
Oncosiphon schlechteri (Bolus) Källersjö 153
Oncosiphon suffruticosum (L.) Källersjö 153
Opisthopappus Shih 99, 104
Opisthopappus Iongilobus Shih 104
Opisthopappus taihangensis (Ling) Shih 104
Orınenis (Cass.) Cass. 130
Ormenis lonadioides (Cosson) Maire 131
Orınenis mixta (L.) Dumort. 130
Ormenis nobilis (L.) Gay 130
Ormenis praecox (Link) Briq. \& Cavill. 130
Ormenis santolinoides (Munby) Harling 130

Osmitopsis Cass. 144, 145
Osmitopsis afra (L.) Bremcr 145
Osmitopsis asteriscoides (P. Bergius) Less. 145
Osmitopsis dentata (Thunb.) Bremer 145
Osmitopsis glabra Bremer 145
Osmitopsis nana Schltr 145
Osmitopsis osmitoides (Less.) Bremer 145
Osmitopsis parvifolia (DC.) Hofmeyer 145
Osmitopsis pinnatifida (DC.) Bremer 145
Osmitopsis tenuis Bremer 145
Otanthus Hoffsgg \& Link 82, 126, 127, 128
Otanthus maritimus (L.) Hoffsgg \& Link 128
Otochlarnys DC. 157
Otochlanys eckloniana DC. 158
Otochlamys pedunculata Schltr 159
Otospermum Willk. 149, 153
Otospermum glabrum (Lagasca) Willk. 153

Pentzia Thunb. 76, 77, 147-149, 151, 152, 154
Pentzia annua DC. 155
Pentzia argentea Hutch. 151
Pentzia bolusii Hutch. 151
Pentzia calcarea Kies 151
Pentzia calva S. Moore 152
Pentzia cooperi Harvey 152
Pentzia crenata Thunb. 151
Pentzia dentata (L.) OK. 151, 152
Pentzia eenii S. Moore 152
Pentzia elegans DC. 152
Pentzia galpinii Hutch. 155
Pentzia globifera (Thunb.) Hutch. 153
Pentzia globosa Less. 152
Pentzia hesperidum Maire \& Wilczek 152
Pentzia incana (Thunb.) OK. 152
Pentzia lanata Hutch. 152
Pentzia membranacea Hutch. 155
Pentzia laxa Bremek. \& Oberm. 152
Pentzia monocephala S. Moore 152
Pentzia monodiana Maire \& Wilczek 151, 152
Pentzia nana Burch. 152
Pentzia peduncularis B. Nord. 152
Pentzia pinnatisecta Hutch. 152
Pentzia punctata Harvcy 152
Pentzia quinquefida (Thunb.) Less. 152
Pentzia schistostephioides M. Taylor 108
Pentzia sphaerocephala DC. 152
Pentzia spinescens Less. 152
Pentzia tanacetifolia (L.) Hutch. 153
Pentzia tomentosa B. Nord. 152
Pentzia tortuosa (DC.) Fenzl ex Harvey 152
Pentzia viridis Kies 152
Peyrousea DC. 160
Peyrousea umbellata (L. f.) Fourc. 160
Phaeocephalus S. Moore 95
Phaeocephalus gnidioides S. Moore 95
Phaeostigma Muld. 82, 110, 111, 112, 115, 116
Phaeostigma quercifolium (W. Smith) Muld. 116
Phaeostigma salicifolium (Mattf.) Muld. 115, 116
Phaeostigma variifolium (Chang) Muld. 116
Phalacrocarpum (DC.) Willk. 77, 137, 138, 140
Phalacrocarpum anomalum Cout. 140
Phalacrocarpum hoffmannseggii (Samp.) Lainz 140
Phalacrocarpum oppositifolium (Brot.) Willk. 140
Phymaspermum Less. 77, 91, 92, 94, 95
Phymaspermum acerosum (DC.) Källersjö 94
Phymaspermum aciculare (E. Meycr ex Harvey)
Benth. ex B. D. Jackson 94
Phymaspermum appressum Bolus 94
Phymaspermum argenteum Brusse 94
Phymaspermum athanasioidcs (S. Moore)
Källersjö 94
Phymaspermum bolusii (Hutch.) Källersjö 94
Phymaspermum equisetoides Thell. 94
Phymaspermum erubescens (Hutch.) Källersjö 94
Phymaspermum junceum Less. 94
Phymaspermum leptophyllum (DC.) Benth. ex B.
D. Jackson 94

Phymaspermum montanum (Hutch.) Källersjö 94

Phymaspermum parvifolium (DC.) Benth. ex B. D. Jackson 94

Phymaspermum pcglerae (Hutch.) Källersjö 94
Phymaspermum pinnatifidum (Oliver) Källersjö 94
Phymaspermum schroteri Compton 94
Phymaspermum scoparium (DC.) Källcrsjö 94
Phymaspermum villosum (Hilliard) Källersjö 94
Phymaspermum woodii (Thell.) Källersjö 94
Picrothamnus Nutt. 111-113, 121, 125, 126
Picrothamnus desertorum Nutt. 125
Plagiocheilus Arn. ex D.C. 76, 161
Plagius L'Hérit. ex DC. 136, 138, 139, 143, 144
Plagius ageratifolius (Desf.) L'Hérit. ex DC. 143
Plagius flosculosus (L.) Alavi \& Heyw. 143, 144
Plagius grandis (L.) Alavi \& Hcyw. 144
Polychrysum (Tzvelev) Kovalevsk. 108, 109
Polychrysum tadshikorum (Kudr.) Kovalevsk. 109
Prolongoa Boiss. 77, 82, 83, 136, 137, 138, 140, 141
Prolongoa sect. Hymenostemma Kunze 140, 141, 142
Prolongoa hispanica Lopéz González \& Jarvis 141
Prolongoa pectinata auct. 141
Pseudocadiscus Lisowski 161
Pseudohandelia Tzvelev 108, 109, 110
Pseudohandelia umbellifera (Boiss.) Tzvelev 109
Psilostrophe D.C. 161
Pyrethrum Zinn 98, 100, 101, 105, 106
Pyrethrum sect. Dendranthema DC. 113
Pyrethrum sect. Leptanthemum Tzvelev 104
Pyrethrum sect. Leucanthemopsis (Giroux) Tzvelev 101
Pyrethrum sect. Richteria (Karelin \& Kir.) Tzvelev 101
Pyrethrum sect. Trichanthemopsis Tzvelev 101, 105
Pyrethrum sect. Xylopyrethrum Tzvelev 101
Pyrethrum abrotanifolium Bunge ex Ledeb. 101
Pyrethrum alatavicum (Herder) O. \& B. Fedtsch. 101
Pyrethrum arassanicum (Winkler) O. \& B. Fedtsch. 98
Pyrethrum arctodzhungaricum Golosk. 101
Pyrethrum aromaticum Tzvelev 101
Pyrethrum arundanum Boiss. 142
Pyrethrum atkinsonii (C. B. Clarke) Ling \& Shih 101
Pyrethrum aucheranum DC. 101
Pyrethrum balsamita (L.) Willd. 102
Pyrethrum balsamitoides (Náb.) Tzvelev 102
Pyrethrum chamaemelifolium (Sommier \& Levier) Sosn. 102
Pyrethrum changaicum H. Kraschen. ex Grubov 102
Pyrethrum cinerariifolium Trevir 102
Pyrethrum clusii Fischer ex Reichb. 102
Pyrethrum coccineum (Willd.) Vorosch. 102
Pyrethrum corymbiforme Tzvelev 102
Pyrethrum corymbosum (L.) Willd. 102
Pyrethrum daghestanicum (Rupr. ex Boiss.) Rupr. ex Flerov 102
Pyrethrum demetrii Manden. 102
Pyrethrum deserticola Murb. 143
Pyrethrum discoideum Ledeb. 154
Pyrethrum djilgense (Franchet) Tzvelev 98
Pyrethruin dolomiticum Galushko 102
Pyrethrum fruticulosum Biehler 103
Pyrethrum galae Popov 102
Pyrethrum galushkoi Prima 102
Pyrethrum gayanum Cosson \& Durieu 142
Pyrethruin glanduliferum Sommier \& Levier 102
Pyrethrum grossheimii Sosn. 102
Pyrethrum heldreichianum Fenzl ex Tchich. 101
Pyrethrum hissaricum H. Kraschen. 102
Pyrethrum karelinii H. Kraschen. 102
Pyrethrum kaschgaricum H. Kraschen. 102
Pyrethrum kelleri (Krylov \& Plotn.) H. Kraschen. 102
Pyrethrum komarovii Sosn. 103
Pyrethrum kotschyi Boiss. 102

Pyrethrum krylovianum H. Kraschen. 102
Pyrethrum kubense Grossh. 102
Pyrethrum lanuginosum (Schultz-Bip. \& Hcrder)
Tzvelev 102
Pyrethrum leptophyllum Steven 102
Pyrethrum lingulatum Boiss. 105
Pyrethrum macrocarpum (Cosson \& Kralik) Alavi 154
Pyrethrum macrophyllum (Waldst. \& Kit.) Willd. 102
Pyrethrum majus (Desf.) Tzvelev 102
Pyrethrum maresii Cosson 142
Pyrethrum marionii Albov 102
Pyrethrum mikeschinii Tzvelev 103
Pyrethrum neglectum Tzvelev 98
Pyrethrum ordubadense Manden. 103
Pyrethrum oxylepis (Bordz.) Tzvclev 103
Pyrethrum parthenifolium Willd. 103
Pyrethrum parthenifolium var. peucedanifolia Sosn. 103
Pyrethrum parthenium (L.) Smith 103
Pyrethrum petrareum Shih 103
Pyrethrum peucedanifolium (Sosn.) Manden. 103
Pyrethrum poteriifolium Ledeb. 103
Pyrethrum pulchellum Turcz. 103
Pyrethrum pulchrum Ledeb. 103
Pyrethrum punctatum (Desr.) Bordz. ex Sosn. 103
Pyrethrum pyrethroides (Karelin \& Kir.) B.
Fedtsch. \& H. Kraschen. 98
Pyrethrum richterioides (Winkler) H. Kraschen. 103
Pyrethrum roseum (Adams) M. Bieb. 103
Pyrethrum semenovii (Herder) Winkler ex O. \& B. Fcdtsch. 103
Pyrethrum sericeum (Adams) M. Bieb. 103Pyrethrum sevanense Sosn. ex Grossh. 103
Pyrethrum silaifolium Steven 103
Pyrethrum santolinoides DC. 103
Pyrethrum songaricum Tzvclev 103
Pyrethrum sorbifolium Boiss. 103
Pyrethrum tatsienense (Bureau \& Franchet) Ling ex Shih 103
Pyrethrum tianshanicum H. Kraschen. 97, 101, 105
Pyrethrum transiliense (Hcrder) Regel \& Schmalh. 98
Pyrethrum tricholobum Sosn. ex Manden. 103
Pyrethrum trichophyllum Sosn. 103
Pyrethrum yabrudae Mout. 104

Relhania L’ Hérit. emend. Anderb. \& Bremer 161 Rennera Merxm. 77, 147-149, 152
Rennera eenii (S. Moore) Källersjö 152
Rennera laxa (Bremek. \& Oberm.) Källersjö 152
Rennera limnophila Merxm. 152
Rhetinolepis Cosson 126, 130, 131
Rhetinolepis lonadioides Cosson 130, 131
Rhodanthemum (Vogt) Bremer \& Humphries 138, 141, 142
Rhodanthemum arundanum (Boiss.) Wilcox,
Bremer \& Humphries 141, 142
Rhodanthemum atlanticum (Ball) Wilcox, Bremer \& Humphries 142
Rhodanthemum briquetii (Maire) Wilcox, Bremer \& Humphries 142
Rhodanthemum catananche (Ball) Wilcox, Bremer \& Humphries 142
Rhodanthemum depressum (Ball) Wilcox, Bremer \& Humphries 142
Rhodanthemum gayanum (Cosson \& Durieu) Wilcox, Bremer \& Humphries 142
Rhodanthemum hosmariense (Ball) Wilcox, Bremer \& Humphries 142
Rhodanthemum maresii (Cosson) Wilcox, Bremer \& Humphries 142
Rhodanthemum maroccanum (Battand.) Wilcox, Bremer \& Humphries 142
Rhodanthemum mesatlanticum (Emb. \& Maire) Wilcox, Bremer \& Humphries 142

Rhodanthemum pseudo-catananche (Maire)
Wilcox, Bremer \& Humphries 142
Rhodanthemum redieri (Maire) Wilcox, Bremer \& Humphries 142
Richteria Karelin \& Kir. 77, 96, 98, 105
Richteria djilgense (Franchet) Bremer \& Humphries 98
Richteria leontopodium Winkler 98
Richteria pyrethroides Karelin \& Kir. 98

Santolina L. 77, 126, 127, 128
Santolina annua L. 155
Santolina chamaecyparissus L. 128
Santolina elegans Boiss. ex DC. 128
Santolina insularis (Gennari ex Fiori) Arrig. 128
Santolina ligustica Arrig. 128
Santolina marchi Arrig. 128
Santolina oblongifolia Boiss. 128
Santolina rosmarinifolia L. 128
Santolina sinaica Fresen. 103
Santolina viscosa Lagasca 128
Santolineae 75
Schistostephium Less. 147, 151, 160
Schistostephium crataegifolium (DC.) Fenzl ex Harvey 160
Schistostephium dactyliferum Hutch. 160
Schistostephium flabelliforme Less. 160
Schistostephium griseum (Harvey) Hutch. 160
Schistostephium heptalobum (DC.) Oliver \& Hiern 160
Schistostephium hippiifolium (DC.) Hutch. 160
Schistostephium mollissimum Hutch. 160
Schistostephium oxylobum S. Moore 160
Schistostephium rogersii Hutch. 160
Schistostephium rotundifolium (DC.) Fenzl ex Harvey 160
Schistostephium saxicola Hutch. 160
Schistostephium scandens Hutch. 160
Schistostephium umbellatum (L. f.) Bremer \& Humphries 160
Schistostephium villosum Hutch. 160
Sclerorhachis (Rech. f.) Rech. f. 76, 82, 106, 108, 109, 110
Sclerorhachis caulescens (Aitch. \& Hemsley) Rech. f. 110
Sclerorhachis leptoclada Rech.f 110
Sclerorhachis platyrachis (Boiss.) Podl. ex Rech. f. 110
Sclerorhachis polysphaera Rech. f. 110
Senecioneae 74, 75, 161
Senecionideae 75
Sénécionées 75
Seriphidium (Besser ex Hook.) Fourr. 77, 111-113,
116, 117-120
Seriphidium algeriense (Filat.) Y. R. Ling 118
Seriphidium amoenum (Polj.) Polj. 118
Seriphidium aralense (H. Kraschen.) Polj. 118
Seriphidium arbusculum (Nutt.) W. A. Weber 118
Seriphidium arenicolum (H. Kraschen. ex Polj.) Y. R. Ling 118

Seriphidium argilosum (Beetle) Bremer \& Humphries 118
Seriphidium assurgens (Filat.) Bremer \&
Humphries in Y. R. Ling 118
Seriphidium aucheri (Boiss.) Ling \& Y. R. Ling 118
Seriphidium badhysi (Krasch. \& Lincz. ex Polj.) Polj. C. Asia. 118
Seriphidium balchanorum (H. Kraschen.) Polj. 118
Seriphidium baldshuanicum (H. Kraschen. \&
Zaprj.) Polj. 118
Seriphidium barrelieri (Besser) Soják 118
Seriphidium bicolor (Rech. f. \& Wagenitz) Bremer \& Humphries 118
Seriphidium bigelowii (A. Gray) Bremer \& Humphries 118
Seriphidium borotalense (Polj.) Ling \& Y. R. Ling 118

Seriphidium botschantzevii (Filat.) Y. R. Ling 118
Seriphidium brevifolium (Wallich ex DC.) Ling \& Y. R. Ling 118

Seriphidium caerulescens (L.) Soják 118
Seriphidium camelorum (H. Kraschen.) Polj. 118
Seriphidium canum (Pursh) W. A. Weber 118
Seriphidium chitralense (Podl.) Bremer \&
Humphries 118
Seriphidium ciniforme (H. Kraschen. \& Popov. ex Polj.) Polj. 118
Seriphidium cinum (P. Bergius ex Polj.) Polj. 118
Seriphidium compactum (Fischer ex DC.) Polj. 118
Seriphidium cretaceum (Fiori) Bremer \& Humphries 118
Seriphidium densifolium (Filat.) Y. R. Ling. 118
Seriphidium deserti (H. Kraschen.) Polj. 118
Seriphidium diffusum (H. Kraschen. ex Polj.) Y. R. Ling 118

Seriphidium dubyanskyanum (H. Kraschen. ex Polj.) Polj. 118
Seriphidium dumosum (Polj.) Polj. 118
Scriphidium dzevanovskyi (Leonova) Soják 118
Seriphidium elongatum (Filat. \& Ladyg.) Bremer \& Humphries in Y. R. Ling
118
Seriphidium eremophilum (H. Kraschen. \& Butkov ex Polj.) Bremer \& Humphries in Y. R. Ling 118
Seriphidium federovii (Rzazade) Y. R. Ling 118
Seriphidium fedtschenkoanum (H. Kraschen.)Polj. 118
Seriphidium ferganense (H. Kraschen. ex Polj.) Polj. 118
Seriphidium finitum (Kitagawa) Ling \& Y. R. Ling 118
Seriphidium fragrans (Willd.) Polj. 118
Seriphidium freitagii (Podl.) Bremer \& Humphries 118
Seriphidium fulvellum (Filat. \& Ladyg.) Bremer \& Humphries 118
Seriphidium ghazniense (Podl.) Bremer \& Humphries 118
Seriphidium ghoratense (Podl.) Bremer \& Humphries 118
Seriphidium glanduligerum (H. Kraschen. ex Polj.) Polj. 118
Seriphidium glaucinum (H. Kraschen. ex Polj.) Bremer \& Humphries in Y. R. Ling
118
Seriphidium gorjaevii (Polj.) Y. R. Ling \& Humphries 118
Seriphidium gracilescens (H. Kraschen. \& Iljin) Polj. 118
Seriphidium grenardii (Franchet) Y. R. Ling 118
Seriphidium gurganicum (H. Kraschen.) Bremer \& Humphries in Y. R. Ling
118
Seriphidium gypsaceum (H. Kraschen., Popov \& Lincz. ex Polj.) Polj. 118
Seriphidium halophilum (H. Kraschen.) Polj. 119
Seriphidium heptapotamicum (Polj.) Ling \& Y. R. Ling 119
Scriphidium herba-album (Asso) Soják 119
Seriphidium incultum (Del.) Y. R. Ling 119
Seriphidium issykkulense (Polj.) Polj. 119
Seriphidium junceum (Karelin \& Kir.) Polj. 119
Seriphidium kandaharense (Podl.) Bremer \& Humphries 119
Seriphidium karatavicum (H. Kraschen. \& Abolin ex Polj.) Ling \& Y. R. Ling 119
Seriphidium kasakorum (H. Kraschen.) Bremer \& Humphries 119
Seriphidium kaschgaricum (H. Kraschen.) Polj. 119
Seriphidium kemrudicum (H. Kraschen.) Polj. 119
Seriphidium kermanense (Podl.) Bremer \& Humphries 119

Seriphidium khorassanicum (Podl.) Bremcr \& Humphries 119
Seriphidium knorringianum (H. Kraschen.) Polj. 119
Seriphidium kochiiforme (H. Kraschen. \& Lincz. ex Polj.) Polj. 119
Seriphidium kopetdaghense (H. Kraschen. cx Polj.) Polj. 119
Seriphidium korovinii (Polj.) Polj. 119
Seriphidium korshinskyi (H. Kraschen. ex Polj.) Y. R. Ling 119

Scriphidium kurramensc (Qaz.) Y. R. Ling 119
Seriphidium lehmannianum (Bunge) Polj. 119
Seriphidium lerchianum (G. Weber ex Stechm.) Polj. 119
Seriphidium lessingianum (Besser) Polj. 119
Seriphidium leucodes (Schrenk) Polj. 119
Seriphidium leucotrichum (H. Kraschen. ex Polj.)
Bremcr \& Humphries in Y. R. Ling 119
Seriphidium lobulifolium (Boiss.) Polj. 119
Seriphidium longilobum (Osterh.) Bremer \& Humphries 119
Seriphidium maritimum (L.) Polj. 119
Seriphidium mendozanum (DC.) Bremer \& Humphries 119
Seriphidium minchunense Ling \& Y. R. Ling 119
Seriphidium mogoltavicum (Polj.) Y. R. Ling 119
Seriphidium mongolorum (H. Kraschen.) Ling \& Y. R. Ling 119

Seriphidium monogynum (Waldst. \& Kit.) Polj. 119
Seriphidium mucronulatum (Polj.) Y. R. Ling 119
Seriphidium namanganicum (Polj.) Polj. 119
Seriphidium nigricans (Filat. \& Ladyg.) Bremer \& Humphries in Y. R. Ling 119
Seriphidium nitrosum (G. Wcber in Stechm.) Polj. 119
Seriphidium novum (Nelson) W. A. Weber 119
Seriphidium nutans (Willd.) Soják 119
Seriphidium oliverianum (Gay ex Besser) Bremer \& Humphries in Y. R. Ling
119
Seriphidium oranense (Deb. ex Filat.) Y. R. Ling 119
Seriphidium oratense (Deb. \& Filat.) Y. R. Ling 119
Seriphidium palmeri (A. Gray) Bremer \& Humphries 118, 119
Seriphidium pauciflorum (G. Weber in Stechm.) Polj. 119
Seriphidium poljakovii (Filat.) Y. R. Ling 119
Seriphidium polystichum (Polj.) Y. R. Ling. 119
Seriphidium porrectum (H. Kraschen. ex Polj.) Polj. 119
Seriphidium prasinum (H. Kraschen. ex Polj.) Polj. 119
Seriphidium prolixum (H. Kraschen. cx Polj.) Polj. 119
Seriphidium pygmaeum (A. Gray) W. A. Weber 119
Seriphidium quettense (Podl.) Bremer \& Humphries 119
Seriphidium rhodanthum (Rupr.) Polj. 119
Seriphidium rigidum (Nutt.) W. A. Weber 119
Seriphidium rothrockii (A. Gray) W. A. Weber 119
Seriphidium saharum (Pomel) Y. R. Ling 119
Scriphidium saissanicum (H. Kraschen.) Bremer \& Humphries in Y. R. Ling
119
Seriphidium santolinum (Schrenk) Polj. 119
Seriphidium santonicum (L.) Soják 119
Seriphidium sawanense Y. R. Ling \& Humphries 119
Seriphidium schrenkianum (Ledcb.) Polj. 119
Seriphidium scopiforme (Lcdeb.) Polj. 119
Seriphidium scotinum (Nevski) Polj. 119
Seriphidium semiaridum (H. Kraschen. \&

Lavrenko) Ling \& Y. R. Ling 119
Seriphidium serotinum (Bunge) Polj. 119
Seriphidium sieberi (Besser) Bremer \& Humphries in Y. R. Ling 119
Seriphidium skorniakowii (Winkler) Bremer \& Humphries in Y. R. Ling 119
Seriphidium spicigerum (Koch) Polj. 119
Seriphidium stenocephalum (H. Kraschen. ex Polj.) Polj. 119
Seriphidium subchrysolepis (Filat.) Bremer \& Humphries 119
Seriphidium sublessingianum (Kell.) Polj. 119
Seriphidium subsalsum (Filat.) Bremer \& Humphries in Y. R. Ling 119
Seriphidium szowitzianum (Besser) Polj. 119
Seriphidium tauricum (Willd.) Polj. 119
Seriphidium tecti-mundi (Podl.) Bremer \& Humphries 119
Seriphidium tenuisectum (Nevski) Polj. 119
Seriphidium terrae-albae (H. Kraschen.) Polj. 119
Seriphidium thomsonianum (C. B. Clarke) Ling \& Y. R. Ling 119

Seriphidium tianshanicum (H. Kraschen.) Y. R. Ling 119
Seriphidium transiliense (Polj.) Polj. 119
Seriphidium tridentatum (Nutt.) W. A. Weber 118 , 119
Seriphidium tripartitum (Rydb.) W. A. Weber 120
Seriphidium turanicum (H. Kraschen.) Polj. 120
Seriphidium turcomanicum (Gand.) Polj. 120
Seriphidium vachanicum (H. Kraschen. ex Polj.) Polj. 120
Seriphidium validum (H. Kraschen. ex Polj.) Polj. 120
Seriphidium valesianum (Lam.) Y. R. Ling. 120
Seriphidium vallesiacum (All.) Soják 120
Seriphidium vaseyanum (Rydb.) W. A. Weber 120
Solenogyne Cass. 161
Soliva Ruíz Lopez \& Pavon 76, 81, 147, 150, 151, $158,159,160$
Soliva anthemifolia R. Br. 160
Soliva macrocephala Cabrera 160
Soliva mutisii Kunth 160
Soliva neglecta Cabrera 160
Soliva pterosperma (Juss.) Less. 160
Soliva sessilis Ruíz Lopez \& Pavon 159, 160
Soliva stolonifera (Brot.) R. Br. ex G. Don in
Loudon 159, 160
Soliva triniifolia Griseb. 160
Soliva valdiviana Philippi 160
Spathipappus Tzvelev 100, 101, 105
Spathipappus chitralensis Podl. 101, 102
Spathipappus griffithii (C. B. Clarke) Tzvelev 101, 102
Spathipappus porphyrostephanus (Rech. f.)
Tzvelev 101, 103
Sphaeroclinium (DC.) Schultz-Bip. 157, 158
Sphaeroclinium nigellifolium (DC.) Schultz-Bip. 158
Sphaeromeria Nutt. 111-113, 117
Sphaeromeria argentea Nutt. 117
Sphaeromeria cana (D. C. Eaton) A. A. Heller 117
Sphaeromeria capitata Nutt. 117
Sphaeromeria compacta (H. M. Hall) A. Holmgren, Shultz \& Lowrey 117
Sphaeromeria diversifolia (D. C. Eaton) Rydb. 117
Sphaeromeria martirensis (Wiggins) A. Holmgren, Shultz \& Lowrey 117
Sphaeromeria potentilloides (A. Gray) A. A. Heller 117
Sphaeromeria ruthiae A. Holmgren, Shultz \& Lowrey 117
Sphaeromeria simplex (Nelson) A. A. Heller 117
Sphenogyne R. Br. 93,
Sphenogyne brachyloba Kunze 93,
Stenops B. Nord. 161
Stilpnolepis H. Kraschen. 111, 112, 116

Stilpnolcpis centiflora (Maxim.) H. Kraschen. 116
Stilpnolepis intricata (Franchet) Shih 116
Stilpnophyton Less. 95
Stilpnophyton inopinatum Hutch. 96
Stilpnophyton linifolium (L. f.) Less. 96
Stilpnophyton longifolium (Thunb.) Less. 96
Stilpnophyton oocephalum DC. 96

Tanacetinae Bremer \& Humphries
$73,74,76,77,84,96,99,100,107,138,145$
Tanacetopsis (Tzvelev) Kovalevsk. 77, 99, 104, 106, 109
Tanacetopsis afghanica (Gilli) Bremer \& Humphries 104
Tanacetopsis botschantzevii (Kovalevsk.) Kovalevsk. 104
Tanacetopsis doabensis (Podl.) Bremer \& Humphries 104
Tanacetopsis eriobasis (Rech. f.) Kovalevsk. 104
Tanacetopsis ferganensis (Kovalevsk.) Kovalevsk. 104
Tanacetopsis freitagii (Podl.) Bremer \& Humphries 104
Tanacetopsis golovskovii (Polj.) Karmysch. 104
Tanacetopsis hedgei (Podl.) Bremer \& Humphries 104
Tanacetopsis kamelinii Kovalevsk. 104
Tanacetopsis karataviensis (Kovalevsk.) Kovalevsk. 104
Tanacetopsis kjurendaghii Kurbanov 104
Tanacetopsis krascheninnikovii (Nevski) Kovalevsk. 104
Tanacetopsis mucronata (Regel \& Schmalh.) Kovalevsk. 104
Tanacetopsis pjataeviae (Kovalevsk.) Karmysch. 104
Tanacetopsis platyrachis (Boiss.) Kovalevsk. 104
Tanacetopsis santoana (H. Kraschen., Popov \& Vved.) Kovalevsk. 104
Tanacetopsis setacea (Regel \& Schmalh.) Kovalevsk. 104
Tanacetopsis submarginata (Kovalevsk.) Kovalevsk. 104
Tanacetopsis subsimilis (Rech. f.) Kovalevsk. 104
Tanacetopsis tripinnatifida (Oliver) Kovalevsk. 105
Tanacetopsis urgutensis (Popov) Kovalevsk. 105
Tanacetum L.
76, 77, 96, 97, 98, 99, 100-104, 105-111, 113, 114, $117,128,134,140$
Tanacetum sect. Asterotricha Tzvelev 101
Tanacetum sect. Balsamita (Miller) Schultz-Bip. 101
Tanacetum sect. Hippolytia (Polj.) Podl. 106
Tanacetum sect. Pyrethrum (Zinn.) Reichenb.f. 98, 140
Tanacetum sect. Pyrethrum subsect.
Leucanthemopsis Giroux 101
Tanacetum abrotanifolium (L.) Druce 101
Tanacetum abrotanoides Bremer \& Humphries 101
Tanacetum achilleifolium (M. Bieb.) Schultz-Bip. 101
Tanacetum afghanicum (Gilli) Podl. 104
Tanacetum akinfievii (Alexej.) Tzvelev 101
Tanacetum alashanense Ling 106
Tanacetum alatavicum Herder 101
Tanacetum albipannosum Huber-Mor. \& Grierson 101
Tanacetum alyssifolium (Bornm.) Grierson 101
Tanacetum annuum L. 100, 101
Tanacetum arctodzhungaricum (Golosk.) Bremer \& Humphries 101
Tanacetum archibaldii Podl. 101
Tanacetum argenteum (Lam.) Willd. 101
Tanacetum argyranthemoides (Boiss. \& Kotschy) Schultz-Bip. 101
Tanacetum argyrophyllum (C. Koch) Tzvelev 103
Tanacetum armenum (DC.) Schultz-Bip. 101

Tanacetum aromaticum (Tzvelev) Bremer \& Humphries 101
Tanacetum artemisioides Schultz-Bip. in Hook. f. 101
Tanacctum atkinsonii (C. B. Clarke) Kitam. 101
Tanacetum aucheranum (DC.) Schultz-Bip. 101
Tanacetum aucheri DC. 102
Tanacetum audibertii (Req.) DC. 102
Tanacetum balsamita L. 101, 102
Tanacetum bamianicum Podl. 102
Tanacetum barclayanum DC. 102
Tanacetum bipinnatum (L.) Schultz-Bip. 102
Tanacetum boreale Fischer cx DC. 102
Tanacetum budjurnense (Rech. f.) Tzvelev 102
Tanacetum cadmeum (Boiss.) Heyw. 102
Tanacetum camphoratum Less. 101, 102
Tanacetum canescens DC. 102
Tanacetum cappadocicum (DC.) Schultz-Bip. 102
Tanacetum changaicum (H. Kraschen. ex Grubov) Bremer \& Humphries 102
Tanacetum chiliophyllum (Fischer \& C. Meyer) Schultz-Bip. 102
Tanacetum chitralense (Podl.) Bremer \& Humphries 102
Tanacetum cilicium (Boiss.) Grierson 102
Tanacetum cinerariifolium (Trevir) Schultz-Bip. 101, 102
Tanacetum coccineum (Willd.) Grierson 101, 102
Tanacetum compactum Hall 117
Tanacetum corymbiforme (Tzvelev) Bremer \& Humphries 102
Tanacetum corymbosum (L.) Schultz-Bip. 100, 101, 102
Tanacetum crassicollum (Rech. f.) Podl. 106
Tanacetum crassipes (Stchegl.) Tzvelev 102
Tanacetum czerniakowskae (H. Kraschen.) Parsa 102
Tanacetum daghestanicum (Rupr. ex Boiss.) Bremer \& Humphries 102
Tanacetum demetrii (Manden.) Bremer \& Humphries 102
Tanacetum densum (Labill.) Schultz-Bip. 102
Tanacetum dcpauperatum (Post) Grierson 101, 102
Tanacetum djilgense (Franchet) Podl. 98
Tanacetum doabense Podl. 104
Tanacetum dolomiticum (Galushko) Bremer \& Humphries 102
Tanacetum dolichophyllum (Kitam.) Kitam. 106
Tanacetum duderanum (Boiss.) Tzvelev 103
Tanacetum dumosum Boiss. 102
Tanacetum eginense (Hausskn. ex Bornm.) Grierson 102
Tanacetum elongatum (Bornm. \& Gauba) Parsa 102
Tanacetum eriobasis (Rech. f.) Kovalcvsk. 104
Tanacetum falcatolobatum H. Kraschen. 102
Tanacetum falconeri Hook. f. 102
Tanacetum ferulaceum (Webb ex Berth.) Schultz-Bip. 102, 107
Tanacetum flavovirens (Boiss.) Tzvelev 103
Tanacetum freitagii Podl. 104
Tanacetum funkii Schultz-Bip. ex Willk. 102
Tanacetum galae (Popov) Nevski 102
Tanacetum galushkoi (Prima) Bremer \& Humphries 102
Tanacetum germanicopolitanum (Bornm. \& Heimerl) Grierson 102
Tanacetum ghoratense Podl. 102
Tanacetum gilletii Podl. 105
Tanacetum gilliatii (Turrill) Parsa 102
Tanacetum glabrum (Decne) Muradyan 98
Tanacetum glanduliferum (Sommier \& Levier) Bremer \& Humphries 102
Tanacetum griffithii (C. B. Clarke) Muradyan 102
Tanacetum grossheimii (Sosn.) Muradyan 102
Tanacetum haradjanii (Rech. f.) Grierson 101, 102
Tanacetum haussknechtii (Bornm.) Grierson 102
Tanacetum hedgei Podl. 104

Tanacetum heimerli (Náb.) Parsa 102
Tanacetum herderi Regel \& Schmal. 102
Tanacetum heterophyllum Boiss. 103
Tanacetum heterotomum (Bornm.) Grierson 102 Tanacetum himachalense Aswal \& Mehrotra 106
Tanacetum hissaricum (H. Kraschen.) Bremer \& Humphries 102
Tanacetum hololeucum (Bornm.) Podl. 102
Tanacetum huronense Nutt. 102
Tanacetum junesarense (Bornm.) Parsa 103
Tanacetum karelinianum Bremer \& Humphries 102
Tanacetum karelinii Tzvelev 102
Tanacetum kaschgarianum Bremer \& Humphries 102
Tanacetum kaschgaricum H. Kraschen. 102, 106
Tanacetum kelleri (Krylov \& Plotn.) Takht. 102
Tanacetum khorassanicum (H. Kraschen.) Parsa 102
Tanacetum kittaryanum (C. Meyer) Tzvelev 103
Tanacetum kornarovii (Winkler) Muradyan 103, 105
Tanacetum kotschyi (Boiss.) Grierson 102
Tanacetum krylovianum (H. Kraschen.) Bremer \& Humphries 102
Tanacetum kubense (Grossh.) Muradyan 102
Tanacetum lanuginosum Schultz-Bip. \& Herder 102
Tanacetum ledebourii Schultz-Bip. 153, 154
Tanacetum leptophyllum (Steven) Schultz-Bip. 102, 104
Tanacetum longipedunculatum (Sosn.) Tzvelev 102
Tanacetum macrocephalum Pampan. 102
Tanacetum macrophyllum (Waldst. \& Kit.) Schultz-Bip. 101, 102
Tanacetum macropodum Hemsley \& Lace 105
Tanacetum marionii (Albov) Bremer \& Humphries 102
Tanacetum maymanense Podl. 103
Tanacetum microphyllum DC. 101, 103
Tanacetum mikeschinii (Tzvelev) Takht. 103
Tanacetum millefolium (L.) Tzvelev 101, 103
Tanacetum modestum (Heimerl ex Stapf) Parsa 102
Tanacetum mucroniferum Huber-Mor. \& Grierson 103
Tanacetum mucronulatum (Hoffsgg \& Link) Heyw. 103
Tanacetum myriophyllum Willd. 103
Tanacetum nitens (Boiss. \& Noë) Grierson 103
Tanacetum nivale Schultz-Bip. 103
Tanacetum niveum (Lagasca) Schultz-Bip. 103
Tanacetum nuristanicum Podl. 103
Tanacetum nuratavicum (H. Kraschen.) Muradyan 105
Tanacetum odessanum (Klokov) Tzvelev 103
Tanacetum oligocephalum (DC.) Schultz-Bip. 102
Tanacetum oltense (Sosn.) Grierson 103
Tanacetum ordubadense (Manden.) Bremer \& Humphries 103
Tanacetum oxylepis (Bordz.) Grierson 103
Tanacetum oxystegium (Sosn.) Grierson 103
Tanacetum paczoskii (Zef.) Tzvelev 103
Tanacetum paghmanense Podl. 105
Tanacetum pakistanicum Podl. 103
Tanacetum paleaceum Podl. 103
Tanacetum paradoxum Bornm. 103
Tanacetum parthenifolium (Willd.) Schultz-Bip. 103
Tanacetum parthenium (L.) Schultz-Bip. 101, 103
Tanacetum petiolosum Pampan. 103
Tanacetum petrareum (Shih) Bremer \& Humphries 103
Tanacetum peucedanifolium (Sosn.) Bremer \& Humphries 103
Tanacetum pinnatum Boiss. 103
Tanacetum podlechii Bremer \& Humphries 103
Tanacctum polycephalum Schultz-Bip. 103

Tanacetum porphyrostephanum (Rech. f.) Bremer \& Humphries 103
Tanacetum poteriifolium (Ledeb.) Grierson 103
Tanacetum praeteritum (Horw.) Heyw. 103
Tanacetum pseudoachillea Winkler 103
Tanacetum ptarmiciflorum (Webb \& Berth.) Schultz-Bip. 103, 107
Tanacetum pulchellum (Turcz.) Schultz-Bip. 103
Tanacetum pulchrum (Ledeb.) Schultz-Bip. 103
Tanacetum punctatum (Desr.) Grierson 103
Tanacetum pyrethroides (Karelin \& Kir.) Schultz-Bip. 98
Tanacetum richterioides (Winkler) Bremer \& Humphries 103
Tanacetum robustum Hook. f. \& Thomson ex C. B. Clarke 103

Tanacetum roseum (Adams) Schultz-Bip. 101, 103
Tanacetum roylei (DC.) Podl. 103
Tanacetum salsugineum Podl. 103
Tanacetum sanguineum (Parsa) Parsa 103
Tanacetum santolina Winkler 103
Tanacetum saxicolum (H. Kraschen.) Tzvelev 103
Tanacetum sclerophyllum (H. Kraschen.) Tzvelev 103
Tanacetum scopulorum (H. Kraschen.) Tzvelev 103
Tanacetum semenovii Herder 103
Tanacetum sericeum (Adams) Schultz-Bip. 103
Tanacetum sevanense (Sosn.) Bremer \& Humphries 103
Tanacetum silaifolium (Steven) Schultz-Bip. 103
Tanacetum silvicola Podl. 103
Tanacetum sinaicum (Fresen.) Del. ex Bremer \& Humphries 103
Tanacetum sipikorense (Bornm.) Grierson 103
Tanacetum songaricum (Tzvelev) Bremer \& Humphries 103
Tanacetum sorbifolium (Boiss.) Grierson 103
Tanacetum stapfianum (Rech. f.) Podl. 103
Tanacetum subsimile (Rech. f.) Kovalevsk. 105
Tanacetum tabrisianum (Boiss.) Sosn. \& Takht. 103
Tanacetum tamrutense (Sosn.) Sosn. 103
Tanacetum tanacetoides (DC.) Tzvelev 103
Tanacetum tatsienense (Bureau \& Franchet) Bremer \& Humphries 103, 106
Tanacetum tenuisectum (Boiss.) Podl. 103
Tanacetum tenuissimum (Trautv.) Gross. 103
Tanacetum tirinense Podl. 103
Tanacetum tomentellum (Boiss.) Grierson 101, 103
Tanacetum tomentosum (Decne) Muradyan 98
Tanacetum trichophyllum (Sosn.) Bremer \& Humphries 103
Tanacetum trifoliolatum Podl. 103
Tanacetum turcomanicum (H. Kraschen.) Tzvelev 103
Tanacetum turlanicum (Pavlov) Tzvelev 102
Tanacetum ulutavicum Tzvelev 103
Tanacetum uniflorum (Fischer \& C. Meyer ex DC.) Schultz-Bip. 104

Tanacetum uralense (H. Kraschen.) Tzvelev 104
Tanacetum vahlii DC. 104
Tanacetum vulgare L. 100, 101, 104
Tanacetum walteri (Winkler) Tzvelev 104
Tanacetum willkommii Schultz-Bip. 104
Tanacetum yabrudae (Mout.) Charpin \& Dittrich 104
Tanacetum zahlbruckneri (Náb.) Grierson 104
Thaminophyllinae Bremer \& Humphries 74, 76, 77,

83, 128, 144, 145

Thaminophyllum Harvey 144, 145, 146
Thaminophyllum latifolium Bond 146
Thaminophyllum multiflorum Harvey 146
Thaminophyllum mundtii Harvey 146
Trichanthemis Regel \& Schmalh. 96, 97, 98, 105
Trichanthemis afghanica Podl. 97
Trichanthemis aulieatensis (B. Fedtsch.) H. Kraschen. 97

Trichanthemis aurea H. Kraschen. 97
Trichanthemis butkovii Kovalevsk. 97
Trichanthemis karataviensis Regel \& Schmalh. 97, 99
Trichanthemis litwinowii (H. Kraschen.) Tzvelev 97
Trichanthemis paradoxos (Winkler) Tzvelev 97
Trichanthemis radiata H. Kraschen. \& Vved. 97 Trichanthemis simulans (Pavlov) Pavlov 97
Tridactylina (DC.) Schultz-Bip. 110, 114, 115
Tridactylina kirilowii (Turcz. ex DC.) Schultz-Bip. 115
Tripleurospermum Schultz-Bip. 76, 77, 83, 134, 147-155, 155, 156
Tripleurospermum ambiguum (Ledeb.) Franchet \& Savat. 156
Tripleurospermum aromaticum Rupr. ex Boiss. 101
Tripleurospermum auriculatum (Boiss.) Rech. f. 155, 156
Tripleurospermum australe Pobed. 156
Tripleurospermum baytopianum E. Hossain 156
Tripleurospermum breviradiatum (Ledeb.) Pobed. 156
Tripleurospermum callosum (Boiss. \& Heldr.) E. Hossain 156
Tripleurospermum caucasicum (Willd.) Hayek 156
Tripleurospermum colchicum (Manden) Pobed. 156
Tripleurospermum conoclinium (Boiss. \& Balansa) Hayek 156
Tripleurospermum corymbosum E. Hossain 156
Tripleurospermum daghestanicum (Rupr. ex Boiss.) Bremer \& Humphries 156
Tripleurospermum decipiens (Fischer \& C. Meyer) Bornm. 156
Tripleurospermum disciforme (C. Meyer) Schultz-Bip. 156
Tripleurospermum elongatum (Fischer \& C. Meyer ex DC.) Bornm. 156
Tripleurospermum fissurale (Sosn.) E. Hossain 156
Triplcurospermum froedinii Rech. f. 156
Tripleurospermum grossheimii (Fed.) Pobed. 156
Tripleurospermum heterolepis (Freyn \& Sint.) Bornm. 156
Tripleurospermum homogamum G. X. Fu 156
Tripleurospermum hygrophilum (Bornm.) Bornm. 156
Tripleurospermum inodorum (L.) Schultz-Bip. 153, 154, 156
Tripleurospermum karjaginii (Manden. \& Sof.) Pobed. 156
Tripleurospermum kotschyi (Boiss.) E. Hossain 156
Tripleurospermum lesbiacum (Candargy) Rech. f. 156
Tripleurospermum limosum (Maxim.) Pobed. 156
Tripleurospermum maritimum (L.) K. Koch 155, 156
Tripleurospermum maritimum (L.) K. Koch ssp. maritimum 156
Tripleurospermum maritimum ssp. phacocephalum (Rupr.) Rauschert 156
Tripleurospermum maritimum ssp. subpolare (Pobed.) Rauschert 156
Tripleurospermum microcephalum (Boiss.) Bornm. 156
Tripleurospermum monticolum (Boiss. \& Huet) Bornm. 156
Tripleurospermum oreades (Boiss.) Rech.f. 156
Tripleurospermum parviflorum (Willd.) Pobed. 156
Tripleurospermum perforatum (Mérat) Lainz 155 , 156
Tripleurospermum phaeocephalum (Rupr.) Pobed. 156
Tripleurospermum pichleri (Boiss.) Bornm. 156
Tripleurospermum repens (Freyn \& Sint.) Bornm. 156

Tripleurospermum rosellum (Boiss. \& Orph.) Hayck 156
Tripleurospermum rupestre (Sommier \& Levier) Pobed. 156
Tripleurospermum sevanense (Manden.) Pobed. 156
Tripleurospermum subnivale Pobed. 156
Tripleurospermum subpolare Pobed. 156
Tripleurospermum szowitzii (DC.) Pobed. 156
Tripleurospermum tchihatchewii (Boiss.) Bornm. 156
Tripleurospermum tempskyanum (Freyn \& Sint.) Hayck 156
Tripleurospermum tenuifolium (Kit.) Freyn. 156
Tripleurospermum tetragonospermum (Sehum.) Pobed. 156
Tripleurospermum transeaucasicum (Manden.) Pobed. 156
Tripleurospermum tridentatum Hoffm. 143
Tripleurospermum tzvelevii Pobed. 156
Turaniphytum Polj. 113, 121, 125
Turaniphytum codringtonii (Reeh. f.) Podl. 125
Turaniphytum eranthemum (Bunge) Polj. 125
Turaniphytum kopetdaghense Polj. 125

Ugamia Pavlov 96, 97, 98
Ugamia angrenica (H. Krasehen.) Tzvelev 98
Ugamia trichanthemoides Pavlov 98
Ursinia Gaertn. 75, 77, 83, 91, 93
Ursinia abrotanifolia (R. Br.) Sprengel 93
Ursinia anethoides (DC.) N. E. Br. 93
Ursinia anthemoides (L.) Poiret 93
Ursinia braehyloba (Kunze) Bremer \& Humphries 93
Ursinia cakilefolia DC. 93
Ursinia caledoniea (E. Phillips) Prassler 93

Ursinia calenduliflora (DC.) N. E. Br. 93
Ursinia ehrysanthemoides (Less.) Harvey 91, 93
Ursinia coronopifolia (Less.) N. E. Br. 93
Ursinia crithmoides (P. Bergius) Poiret 93
Ursinia dentata (L.) Poiret 93
Ursinia diseolor (DC.) N. E. Br. 93
Ursinia dregeana (DC.) N. E. Br. 93
Ursinia cekloniana (Sonder) N. E. Br. 93
Ursinia filipes (E. Meyer ex DC.) N. E. Br. 93
Ursinia frutescens Dinter 93
Ursinia heterodonta (DC.) N. E. Br. 93
Ursinia hispida (DC.) N. E. Br. 93
Ursinia macropoda (DC.) N. E. Br. 93
Ursinia merxmuelleri Prassler 93
Ursinia montana DC. 93
Ursinia nana DC. 93
Ursinia nudicaulis (Thunb.) N. E. Br. 93
Ursinia oreogena Schltr ex Prassler 93
Ursinia paleacea (L.) Moench 93
Ursinia paradoxa Gaertn. 91, 93
Ursinia pilifera (P. Bergius) Poirct 93
Ursinia pinnata (Thunb.) Prassler 93
Ursinia punetata (Thunb.) N. E. Br. 93
Ursinia pygmaca DC. 93
Ursinia quinquepartita (DC.) N. E. Br. 93
Ursinia rigidula (DC.) N. E. Br. 93
Ursinia saxatilis N. E. Br. 93
Ursinia seariosa (Aiton) Poiret 93
Ursinia sericea (Thunb.) N. E. Br. 93
Ursinia serrata (L. f.) Poiret 93
Ursinia speciosa DC. 93
Ursinia subfloseulosa (DC.) Prassler 93
Ursinia tenuifolia (L.) Poiret 93
Ursinia trifida (Thunb.) N. E. Br. 93
Ursinieae H. Robinson \& Brettell 75

Ursiniinae Bremer \& Humphries 75-77, 80, 81, 83 $91-93$
Ursiniopsis E. Phillips 93
Vesicarpa Rydb. 117
Vesicarpa potentilloides (A. Gray) Rydb. 117

Waldheimia Karelin \& Kir. 98
Waldheimia glabra (Deene) Regel 98
Waldheimia huegelii (Schultz-Bip.) Tzvelev 98
Waldheimia lasiocarpa G. X. Fu 98
Waldheimia nivea (C. B. Clarke) Regel 98
Waldheimia stoliczkae (C. B. Clarke) Ostenf. 98
Waldheimia tomentosa (Decne) Regel 98
Waldheimia transalaica Tzvelev 98
Waldheimia tridactylites Karelin \& Kir. 98
Waldheimia vestita (C. B. Clarke) Pampan. 98

Xylanthemum Tzvelev 100, 101, 105
Xylanthemum fisherae (Aiteh. \& Hemsley) Tzvelev 105
Xylanthemum gilletii (Podl.) Bremer \& Humphries 105
Xylanthemum lingulatum (Boiss.) Bremer \& Humphries 105
Xylanthemum macropodum (Hemsley \& Laec) Bremer \& Humphrics 105
Xylanthemum paghmanense (Podl.) Bremer \& Humphries 105
Xylanthemum pamirieum (Hoffm.) Tzvelev 105
Xylanthemum polyeladum (Reeh. f.) Tzvelev 105
Xylanthemum rupestre (Popov ex Nevski) Tzvelev 105
Xylanthemum tianshanicum (H. Krasehen.)
Muradyan 97, 100, 105, 111

[^0]: 1 Abrotanella *
 2 Centipeda *
 3 Ceratogyne *
 4 Cotula
 5 Dimorphocoma*
 6 Elachanthus *
 7 Isoetopsis*
 8 Leptinella
 9 Nananthea
 10 Plagiocheilus *
 11 Soliva
 12 Tripleurospermum

[^1]: * $=$ excluded genera

[^2]: P. argentea Hutch.
 P. bolusii Hutch.
 P. calcarea Kies - Note: Description in Kies, 1945.

